Phosphorus-Containing Dendrimers: Uses as Catalysts, for Materials, and in Biology

  • Anne-Marie Caminade
  • Jean-Pierre Majoral
Part of the Catalysis by Metal Complexes book series (CMCO, volume 37)


Dendrimers are macromolecules elaborated step by step, and constituted of branching units emanating radially from a central core. Phosphorus-containing dendrimers constitute a special class of dendrimers having one phosphorus atom at each branching point. They possess numerous properties, depending mainly on the type of their terminal groups. With organometallic complexes as terminal functions, these dendrimers are able to catalyze various types of reactions, in various media including water, with good enantioselectivities, easy recycling of the dendritic catalyst, and excellent catalytic efficiencies in many cases. Phosphorus-containing dendrimers were also used for the elaboration of materials incorporating the dendrimers in their structure, and for modifying the properties of the surface of the materials at the nanometric scale. Very sensitive DNA chips were elaborated in this way. Phosphorus-containing dendrimers have also important biological properties. Among them, the activation of the human immune system, in particular with the specific and unprecedented multiplication of some immune cells is certainly the most promising.


Natural Killer Cell Bovine Spongiform Encephalopathy Terminal Group Heck Reaction Generation Dendrimer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Fréchet JMJ, Tomalia DA (eds) (2001) Dendrimers and other dendritic polymers. Wiley, ChichesterGoogle Scholar
  2. 2.
    Newkome GR, Moorefield CN, Vögtle F (eds) (2001) Dendrimers and dendrons. Concepts, syntheses, applications. Wiley VCH, WeinheimGoogle Scholar
  3. 3.
    Newkome GR, Shreiner CD (2008) Poly(amidoamine), polypropylenimine, and related dendrimers and dendrons possessing different 1 → 2 branching motifs: an overview of the divergent procedures. Polymer 49:1–173Google Scholar
  4. 4.
    Majoral JP, Caminade AM (1999) Dendrimers containing heteroatoms (Si, P, B, Ge, or Bi). Chem Rev 99:845–880Google Scholar
  5. 5.
    Rengan K, Engel R (1990) Phosphonium cascade molecules. J Chem Soc Chem Commun 1084–1085Google Scholar
  6. 6.
    Miedaner A, Curtis CJ, Barkley RM, Dubois DL (1994) Electrochemical reduction of CO2 catalyzed by small organophosphine dendrimers containing palladium. Inorg Chem 33:5482–5490Google Scholar
  7. 7.
    Petrucci-Samija M, Guillemette V, Dasgupta M, Kakkar AK (1999) A new divergent route to the synthesis of organophosphine and metallodendrimers via simple acid-base hydrolytic chemistry. J Am Chem Soc 121:3248Google Scholar
  8. 8.
    Hudson RHE, Damha MJ (1993) Nucleic-acid dendrimers—novel biopolymer structures. J Am Chem Soc 115:2119–2124Google Scholar
  9. 9.
    Roy R (1997) Recent developments in the rational design of multivalent glycoconjugates. Topics Curr Chem 187:241–274Google Scholar
  10. 10.
    Salamonczyk GM, Kuznikowski M, Skowronska A (2000) A divergent synthesis of thiophosphate-based dendrimers. Tetrahedron Lett 41:1643–1645Google Scholar
  11. 11.
    Launay N, Caminade AM, Lahana R, Majoral JP (1994) A general synthetic strategy for neutral phosphorus-containing dendrimers. Angew Chem Int Ed Engl 33:1589–1592Google Scholar
  12. 12.
    Launay N, Caminade AM, Majoral JP (1995) Synthesis and reactivity of unusual phosphorus dendrimers—a useful divergent growth approach up to the 7th generation. J Am Chem Soc 117:3282–3283Google Scholar
  13. 13.
    Slany M, Bardaji M, Casanove MJ, Caminade AM, Majoral JP, Chaudret B (1995) Dendrimer surface-chemistry—facile route to polyphosphines and their gold complexes. J Am Chem Soc 117:9764–9765Google Scholar
  14. 14.
    Lartigue ML, Donnadieu B, Galliot C, Caminade AM, Majoral JP, Fayet JP (1997) Large dipole moments of phosphorus-containing dendrimers. Macromolecules 30:7335–7337Google Scholar
  15. 15.
    de Gennes PG, Hervet H (1983) Statistics of starburst polymers. J De Physique Lett 44:L351–L360Google Scholar
  16. 16.
    Launay N, Caminade AM, Majoral JP (1997) Synthesis of bowl-shaped dendrimers from generation 1 to generation 8. J Organomet Chem 529:51–58Google Scholar
  17. 17.
    Leclaire J, Coppel Y, Caminade AM, Majoral JP (2004) Nanometric sponges made of water-soluble hydrophobic dendrimers. J Am Chem Soc 126:2304–2305Google Scholar
  18. 18.
    Leclaire J, Dagiral R, Fery-Forgues S, Coppel Y, Donnadieu B, Caminade AM, Majoral JP (2005) Octasubstituted metal-free phthalocyanine as core of phosphorus dendrimers: a probe for the properties of the internal structure. J Am Chem Soc 127:15762–15770Google Scholar
  19. 19.
    Galliot C, Prevote D, Caminade AM, Majoral JP (1995) Polyaminophosphines containing dendrimers—syntheses and characterizations. J Am Chem Soc 117:5470–5476Google Scholar
  20. 20.
    Larre C, Caminade AM, Majoral JP (1997) Chemoselective polyalkylations of phosphorus-containing dendrimers. Angew Chem Int Edit Engl 36:596–599Google Scholar
  21. 21.
    Larre C, Donnadieu B, Caminade AM, Majoral JP (1998) Phosphorus-containing dendrimers: chemoselective functionalization of internal layers. J Am Chem Soc 120:4029–4030Google Scholar
  22. 22.
    Brauge L, Magro G, Caminade AM, Majoral JP (2001) First divergent strategy using two AB2 unprotected monomers for the rapid synthesis of dendrimers. J Am Chem Soc 123:8446Google Scholar
  23. 23.
    Maraval V, Caminade AM, Majoral JP, Blais JC (2003) Dendrimer design: how to circumvent the dilemma of a reduction of steps or an increase of function multiplicity? Angew Chem Int Ed 42:1822–1826Google Scholar
  24. 24.
    Galliot C, Larre C, Caminade AM, Majoral JP (1997) Regioselective stepwise growth of dendrimer units in the internal voids of a main dendrimer. Science 277:1981–1984Google Scholar
  25. 25.
    Larre C, Bressolles D, Turrin C, Donnadieu B, Caminade AM, Majoral JP (1998) Chemistry within megamolecules: regiospecific functionalization after construction of phosphorus dendrimers. J Am Chem Soc 120:13070–13082Google Scholar
  26. 26.
    Maraval V, Laurent R, Donnadieu B, Mauzac M, Caminade AM, Majoral JP (2000) Rapid synthesis of phosphorus-containing dendrimers with controlled molecular architectures: first example of surface-block, layer-block, and segment-block dendrimers issued from the same dendron. J Am Chem Soc 122:2499–2511Google Scholar
  27. 27.
    Kreiter R, Kleij AW, Gebbink R, van Koten G (2001) Dendritic catalysts. Dendrimers IV 217:163–199Google Scholar
  28. 28.
    Astruc D, Chardac F (2001) Dendritic catalysts and dendrimers in catalysis. Chem Rev 101:2991–3023Google Scholar
  29. 29.
    Caminade AM, Maraval V, Laurent R, Majoral JP (2002) Organometallic derivatives of phosphorus-containing dendrimers. Synthesis, properties and applications in catalysis. Curr Org Chem 6:739–774Google Scholar
  30. 30.
    Twyman LJ, King ASH, Martin IK (2002) Catalysis inside dendrimers. Chem Soc Rev 31:69–82Google Scholar
  31. 31.
    Helms B, Frechet JMJ (2006) The dendrimer effect in homogeneous catalysis. Adv Synth Catal 348:1125–1148Google Scholar
  32. 32.
    Andres R, de Jesus E, Flores JC (2007) Catalysts based on palladium dendrimers. New J Chem 31:1161–1191Google Scholar
  33. 33.
    Gade L (2006) Topics in Organometallic Chemistry 20. Dendrimer Catalysis. Springer, BerlinGoogle Scholar
  34. 34.
    Knapen JWJ, Vandermade AW, Dewilde JC, Van Leeuwen PWNM, Wijkens P, Grove DM, Van koten G (1994) Homogeneous catalysts based on silane dendrimers functionalized with arylnickel(II) complexes. Nature 372:659–663Google Scholar
  35. 35.
    Caminade AM, Majoral JP (2005) Phosphorus dendrimers possessing metallic groups in their internal structure (core or branches): syntheses and properties. Coord Chem Rev 249:1917–1926Google Scholar
  36. 36.
    Maraval V, Laurent R, Caminade AM, Majoral JP (2000) Phosphorus-containing dendrimers and their transition metal complexes as efficient recoverable multicenter homogeneous catalysts in organic synthesis. Organometallics 19:4025–4029Google Scholar
  37. 37.
    Koprowski M, Sebastian RM, Maraval V, Zablocka M, Cadierno V, Donnadieu B, Igau A, Caminade AM, Majoral JP (2002) Iminophosphine palladium complexes in catalytic Stille coupling reactions: from monomers to dendrimers. Organometallics 21:4680–4687Google Scholar
  38. 38.
    Ouali A, Laurent R, Caminade AM, Majoral JP, Taillefer M (2006) Enhanced catalytic properties of copper in O- and N-arylation and vinylation reactions, using phosphorus dendrimers as ligands. J Am Chem Soc 128:15990–15991Google Scholar
  39. 39.
    Servin P, Laurent R, Gonsalvi L, Tristany M, Peruzzini M, Majoral JP, Caminade AM (2009) Grafting of water-soluble phosphines to dendrimers and their use in catalysis: positive dendritic effects in aqueous media. J Chem Soc Dalton Trans 4432–4434Google Scholar
  40. 40.
    Servin P, Laurent R, Romerosa A, Peruzzini M, Majoral JP, Caminade AM (2008) Synthesis of dendrimers terminated by bis(diphenylphosphinomethyl)amino ligands and use of their palladium complexes for catalyzing C–C cross-coupling reactions. Organometallics 27:2066–2073Google Scholar
  41. 41.
    Caminade AM, Servin P, Laurent R, Majoral JP (2008) Dendrimeric phosphines in asymmetric catalysis. Chem Soc Rev 37:56–67Google Scholar
  42. 42.
    Laurent R, Caminade AM, Majoral JP (2005) A third generation chiral phosphorus-containing dendrimer as ligand in Pd-catalyzed asymmetric allylic alkylation. Tetrahedron Lett 46:6503–6506Google Scholar
  43. 43.
    Routaboul L, Vincendeau S, Turrin CO, Caminade AM, Majoral JP, Daran JC, Manoury E (2007) New phosphorus dendrimers with chiral ferrocenyl phosphine-thioether ligands on the periphery for asymmetric catalysis. J Organomet Chem 692:1064–1073Google Scholar
  44. 44.
    Gissibl A, Padie C, Hager M, Jaroschik F, Rasappan R, Cuevas-Yanez E, Turrin CO, Caminade AM, Majoral JP, Reiser O (2007) Synthesis and application of phosphorus dendrimer immobilized azabis(oxazolines). Org Lett 9:2895–2898Google Scholar
  45. 45.
    Caminade AM, Majoral JP (2004) Nanomaterials based on phosphorus dendrimers. Acc Chem Res 37:341–348Google Scholar
  46. 46.
    Caminade AM, Majoral JP (2005) Phosphorus dendrimers for the controlled elaboration of organic-inorganic materials. J Mater Chem 15:3643–3649Google Scholar
  47. 47.
    Schmid G, Meyer-Zaika W, Pugin R, Sawitowski T, Majoral JP, Caminade AM, Turrin CO (2000) Naked Au-55 clusters: dramatic effect of a thiol-terminated dendrimer. Chem Eur J 6:1693–1697Google Scholar
  48. 48.
    Schmid G, Emmrich E, Majoral JP, Caminade AM (2005) The Behavior of Au-55 nanoclusters on and in thiol-terminated dendrimer monolayers. Small 1:73–75Google Scholar
  49. 49.
    Badetti E, Caminade AM, Majoral JP, Moreno-Manas M, Sebastian RM (2008) Palladium(0) nanoparticles stabilized by phosphorus dendrimers containing coordinating 15-membered triolefinic macrocycles in periphery. Langmuir 24:2090–2101Google Scholar
  50. 50.
    Franc G, Badetti E, Duhayon C, Coppel Y, Turrin CO, Majoral JP, Sebastián RM, Caminade AM (2010) An efficient synthesis combining phosphorus dendrimers and 15-membered triolefinic azamacrocycles: towards the stabilization of platinum nanoparticles. New J Chem 34:547–555Google Scholar
  51. 51.
    Franc G, Badetti E, Collière V, Majoral JP, Sebastián RM, Caminade AM (2009) Dendritic structures within dendritic structures: dendrimer-induced formation and self-assembly of nanoparticle networks. Nanoscale 1:233–237Google Scholar
  52. 52.
    Reinert P, Chane-Ching JY, Bull L, Dagiral R, Batail P, Laurent R, Caminade AM, Majoral JP (2007) Influence of cationic phosphorus dendrimers on the surfactant-induced synthesis of mesostructured nanoporous silica. New J Chem 31:1259–1263Google Scholar
  53. 53.
    Turrin CO, Maraval V, Caminade AM, Majoral JP, Mehdi A, Reye C (2000) Organic-inorganic hybrid materials incorporating phosphorus-containing dendrimers. Chem Mater 12:3848–3856Google Scholar
  54. 54.
    Soler-Illia G, Rozes L, Boggiano MK, Sanchez C, Turrin CO, Caminade AM, Majoral JP (2000) New mesotextured hybrid materials made from assemblies of dendrimers and titanium(IV)-oxo-organo clusters. Angew Chem Int Ed 39:4250–4254Google Scholar
  55. 55.
    Bouchara A, Rozes L, Soler-Illia GJD, Sanchez C, Turrin CO, Caminade AM, Majoral JP (2003) Use of functional dendritic macromolecules for the design of metal oxo based hybrid materials. J Sol Gel Sci Technol 26:629–633Google Scholar
  56. 56.
    Marmillon C, Gauffre F, Gulik-Krzywicki T, Loup C, Caminade AM, Majoral JP, Vors JP, Rump E (2001) Organophosphorus dendrimers as new gelators for hydrogels. Angew Chem Int Ed 40:2626–2629Google Scholar
  57. 57.
    Larpent C, Genies C, Delgado APD, Caminade AM, Majoral JP, Sassic JF, Leising F (2004) Giant dendrimer-like particles from nanolatexes. Chem Commun 1816–1817Google Scholar
  58. 58.
    El Ghzaoui A, Gauffre F, Caminade AM, Majoral JP, Lannibois-Drean H (2004) Self-assembly of water-soluble dendrimers into thermoreversible hydrogels and macroscopic fibers. Langmuir 20:9348–9353Google Scholar
  59. 59.
    Brauge L, Caminade AM, Majoral JP, Slomkowski S, Wolszczak M (2001) Segmental mobility in phosphorus-containing dendrimers. Studies by fluorescent spectroscopy. Macromolecules 34:5599–5606Google Scholar
  60. 60.
    Brauge L, Veriot G, Franc G, Deloncle R, Caminade AM, Majoral JP (2006) Synthesis of phosphorus dendrimers bearing chromophoric end groups: toward organic blue light-emitting diodes. Tetrahedron 62:11891–11899Google Scholar
  61. 61.
    Sebastian RM, Caminade AM, Majoral JP, Levillain E, Huchet L, Roncali J (2000) Electrogenerated poly(dendrimers) containing conjugated poly(thiophene) chains. Chem Commun 507–508Google Scholar
  62. 62.
    Le Derf F, Levillain E, Trippe G, Gorgues A, Salle M, Sebastian RM, Caminade AM, Majoral JP (2001) Immobilization of redox-active ligands on an electrode: the dendrimer route. Angew Chem Int Ed 40:224–227Google Scholar
  63. 63.
    Kanibolotsky A, Roquet S, Cariou M, Leriche P, Turrin CO, de Bettignies R, Caminade AM, Majoral JP, Khodorkovsky V, Gorgues A (2004) Does charge carrier dimensionality increase in mixed-valence salts of tetrathiafulvalene-terminated dendrimers? Org Lett 6:2109–2112Google Scholar
  64. 64.
    Alonso B, Alonso E, Astruc D, Blais JC, Djakovitch L, Fillaut JL, Nlate S, Moulines F, Rigaut S, Ruiz J, Valério C (2002) Dendrimers containing ferrocenyl or other transition metal sandwich groups. Adv Dendritic Macromol 5:89–127Google Scholar
  65. 65.
    Turrin CO, Chiffre J, Daran JC, de Montauzon D, Caminade AM, Manoury E, Balavoine G, Majoral JP (2001) New chiral phosphorus-containing dendrimers with ferrocenes on the periphery. Tetrahedron 57:2521–2536Google Scholar
  66. 66.
    Turrin CO, Donnadieu B, Caminade AM, Majoral JP (2005) Organometallic derivatives at the core of phosphorus-containing dendrimers. Z Anorg Allg Chem 631:2881–2887Google Scholar
  67. 67.
    Turrin CO, Chiffre J, Daran JC, de Montauzon D, Balavoine G, Manoury E, Caminade AM, Majoral JP (2002) New phosphorus-containing dendrimers with ferrocenyl units in each layer. CR Chim 5:309–318Google Scholar
  68. 68.
    Turrin CO, Chiffre J, de Montauzon D, Daran JC, Caminade AM, Manoury E, Balavoine G, Majoral JP (2000) Phosphorus-containing dendrimers with ferrocenyl units at the core, within the branches, and on the periphery. Macromolecules 33:7328–7336Google Scholar
  69. 69.
    Turrin CO, Chiffre J, de Montauzon D, Balavoine G, Manoury E, Caminade AM, Majoral JP (2002) Behavior of an optically active ferrocene chiral shell located within phosphorus-containing dendrimers. Organometallics 21:1891–1897Google Scholar
  70. 70.
    Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277:1232–1237Google Scholar
  71. 71.
    Yu F, Ahl S, Caminade AM, Majoral JP, Knoll W, Erlebacher J (2006) Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes. Anal Chem 78:7346–7350Google Scholar
  72. 72.
    Kim DH, Lee OJ, Barriau E, Li X, Caminade AM, Majoral JP, Frey H, Knoll W (2006) Hybrid organic-inorganic nanostructures fabricated from layer-by-layer self-assembled multilayers of hyperbranched polyglycerols and phosphorus dendrimers. J Nanosci Nanotechnol 6:3871–3876Google Scholar
  73. 73.
    Zhao WB, Park J, Caminade AM, Jeong SJ, Jang YH, Kim SO, Majoral JP, Cho J, Kim DH (2009) Localized surface plasmon resonance coupling in Au nanoparticles/phosphorus dendrimer multilayer thin films fabricated by layer-by-layer self-assembly method. J Mater Chem 19:2006–2012Google Scholar
  74. 74.
    Yu YM, Feng CL, Caminade AM, Majoral JP, Knoll W (2009) The detection of DNA hybridization on phosphorus dendrimer multilayer films by surface plasmon field enhanced-fluorescence spectroscopy. Langmuir 25:13680–13684Google Scholar
  75. 75.
    Kim BS, Lebedeva OV, Kim DH, Caminade AM, Majoral JP, Knoll W, Vinogradova OI (2005) Assembly and mechanical properties of phosphorus dendrimer/polyelectrolyte multilayer microcapsules. Langmuir 21:7200–7206Google Scholar
  76. 76.
    Kim BS, Lebedeva OV, Koynov K, Gong HF, Caminade AM, Majoral JP, Vinogradova OI (2006) Effect of dendrimer generation on the assembly and mechanical properties of DNA/phosphorus dendrimer multilayer microcapsules. Macromolecules 39:5479–5483Google Scholar
  77. 77.
    Feng CL, Caminade AM, Majoral JP (2010) Selective encapsulation of dye molecules in microcapsules by DNA hybridization. J Mat Chem 20:1438–1441Google Scholar
  78. 78.
    Caminade AM, Majoral JP (2010) Dendrimers and nanotubes: a fruitful association. Chem Soc Rev 39:2034–2047Google Scholar
  79. 79.
    Kim DH, Karan P, Goring P, Leclaire J, Caminade AM, Majoral JP, Gosele U, Steinhart M, Knoll W (2005) Formation of dendrimer nanotubes by layer-by-layer deposition. Small 1:99–102Google Scholar
  80. 80.
    Feng CL, Zhong XH, Steinhart M, Caminade AM, Majoral JP, Knoll W (2007) Graded-bandgap quantum-dot-modified nanotubes: a sensitive biosensor for enhanced detection of DNA hybridization. Adv Mater 19:1933–1936Google Scholar
  81. 81.
    Feng CL, Zhong XH, Steinhart M, Caminade AM, Majoral JP, Knoll W (2008) Functional quantum-dot/dendrimer nanotubes for sensitive detection of DNA hybridization. Small 4:566–571Google Scholar
  82. 82.
    Martinez-Ferrero E, Franc G, Mazeres S, Turrin UO, Boissiere U, Caminade AM, Majoral JP, Sanchez C (2008) Optical properties of hybrid dendritic-mesoporous titania nanocomposite films. Chem Eur J 14:7658–7669Google Scholar
  83. 83.
    Caminade AM, Padie C, Laurent R, Maraval A, Majoral JP (2006) Uses of dendrimers for DNA microarrays. Sensors 6:901–914Google Scholar
  84. 84.
    Miksa B, Slomkowski S, Chehimi MM, Delamar M, Majoral JP, Caminade AM (1999) Tailored modification of quartz surfaces by covalent immobilization of small molecules (gamma-aminopropyltriethoxysilane), monodisperse macromolecules (dendrimers), and poly(styrene/acrolein/divinylbenzene) microspheres with narrow diameter distribution. Colloid Polym Sci 277:58–65Google Scholar
  85. 85.
    Slomkowski S, Miksa B, Chehimi MM, Delamar M, Cabet-Deliry E, Majoral JP, Caminade AM (1999) Inorganic-organic systems with tailored properties controlled on molecular, macromolecular and microscopic level. React Funct Polym 41:45–57Google Scholar
  86. 86.
    Le Berre V, Trevisiol E, Dagkessamanskaia A, Sokol S, Caminade AM, Majoral JP, Meunier B, Francois J (2003) Dendrimeric coating of glass slides for sensitive DNA microarrays analysis. Nucleic Acids Res 31:e88Google Scholar
  87. 87.
    Trevisiol E, Le Berre-Anton V, Leclaire J, Pratviel G, Caminade AM, Majoral JP, Francois JM, Meunier B (2003) Dendrislides, dendrichips: a simple chemical functionalization of glass slides with phosphorus dendrimers as an effective means for the preparation of biochips. New J Chem 27:1713–1719Google Scholar
  88. 88.
    Chaize B, Nguyen M, Ruysschaert T, le Berre V, Trevisiol E, Caminade AM, Majoral JP, Pratviel G, Meunier B, Winterhalter M, Fournier D (2006) Microstructured liposome array. Bioconjugate Chem 17:245–247Google Scholar
  89. 89.
    Nicu L, Guirardel M, Chambosse F, Rourgerie P, Sinh S, Trevisiol E, Francois JM, Majoral JP, Caminade AM, Cattan E, Bergaud C (2005) Resonating piezoelectric membranes for microelectromechanically based bioassay: detection of streptavidin-gold nanoparticles interaction with biotinylated DNA. Sensors Actuator B Chem 110:125–136Google Scholar
  90. 90.
    Boas U, Heegaard PMH (2004) Dendrimers in drug research. Chem Soc Rev 33:43–63Google Scholar
  91. 91.
    Svenson S, Tomalia DA (2005) Commentary—dendrimers in biomedical applications—reflections on the field. Adv Drug Delivery Rev 57:2106–2129Google Scholar
  92. 92.
    Duncan R, Izzo L (2005) Dendrimer biocompatibility and toxicity. Adv Drug Delivery Rev 57:2215–2237Google Scholar
  93. 93.
    Lee CC, MacKay JA, Frechet JMJ, Szoka FC (2005) Designing dendrimers for biological applications. Nat Biotechnol 23:1517–1526Google Scholar
  94. 94.
    Caminade AM, Turrin CO, Majoral JP (2008) Dendrimers and DNA: combinations of two special topologies for nanomaterials and biology. Chem Eur J 14:7422–7432Google Scholar
  95. 95.
    Rolland O, Turrin CO, Caminade AM, Majoral JP (2009) Dendrimers and nanomedicine: multivalency in action. New J Chem 33:1809–1824Google Scholar
  96. 96.
    Picart C, Elkaim R, Richert L, Audoin F, Arntz Y, Cardoso MDS, Schaaf P, Voegel JC, Frisch B (2005) Primary cell adhesion on RGD-functionalized and covalently crosslinked thin polyelectrolyte multilayer films. Adv Funct Mater 15:83–94Google Scholar
  97. 97.
    Hernandez-Lopez JL, Khor HL, Caminade AM, Majoral JP, Mittler S, Knoll W, Kim DH (2008) Bioactive multilayer thin films of charged N,N-disubstituted hydrazine phosphorus dendrimers fabricated by layer-by-layer self-assembly. Thin Solid Films 516:1256–1264Google Scholar
  98. 98.
    Caminade AM, Hameau A, Majoral JP (2009) Multicharged and/or water-soluble fluorescent dendrimers: properties and uses. Chem Eur J 15:9270–9285Google Scholar
  99. 99.
    Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76Google Scholar
  100. 100.
    Larson DR, Zipfel WR, Williams RM, Clark SW, Bruchez MP, Wise FW, Webb WW (2003) Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300:1434–1436Google Scholar
  101. 101.
    Mongin O, Pla-Quintana A, Terenziani F, Drouin D, Le Droumaguet C, Caminade AM, Majoral JP, Blanchard-Desce M (2007) Organic nanodots for multiphotonics: synthesis and photophysical studies. New J Chem 31:1354–1367Google Scholar
  102. 102.
    Mongin O, Krishna TR, Werts MHV, Caminade AM, Majoral JP, Blanchard-Desce M (2006) A modular approach to two-photon absorbing organic nanodots: brilliant dendrimers as an alternative to semiconductor quantum dots? Chem Commun 915–917Google Scholar
  103. 103.
    Terenziani F, Parthasarathy V, Pla-Quintana A, Maishal T, Caminade AM, Majoral JP, Blanchard-Desce M (2009) Cooperative two-photon absorption enhancement by through-space interactions in multichromophoric compounds. Angew Chem Int Ed 48:8691–8694Google Scholar
  104. 104.
    Krishna TR, Parent M, Werts MHV, Moreaux L, Gmouh S, Charpak S, Caminade AM, Majoral JP, Blanchard-Desce M (2006) Water-soluble dendrimeric two-photon tracers for in vivo imaging. Angew Chem Int Ed 45:4645–4648Google Scholar
  105. 105.
    Mongin O, Rouxel C, Robin AC, Pla-Quintana A, Krishna TR, Recher G, Tiaho F, Caminade AM, Majoral JP, Blanchard-Desce M (2008) Brilliant organic nanodots: novel nano-objects for bionanophotonics. Proc SPIE-Int Soc Opt Eng. Nanobiosystems: Processing, Characterization, and Applications 7040:4006Google Scholar
  106. 106.
    Goller R, Vors JP, Caminade AM, Majoral JP (2001) Phosphorus dendrimers as new tools to deliver active substances. Tetrahedron Lett 42:3587–3590Google Scholar
  107. 107.
    Loup C, Zanta MA, Caminade AM, Majoral JP, Meunier B (1999) Preparation of water-soluble cationic phosphorus-containing dendrimers as DNA transfecting agents. Chem Eur J 5:3644–3650Google Scholar
  108. 108.
    Maszewska M, Leclaire J, Cieslak M, Nawrot B, Okruszek A, Caminade AM, Majoral JP (2003) Water-soluble polycationic dendrimers with a phosphoramidothioate backbone: preliminary studies of cytotoxicity and oligonucleotide/plasmid delivery in human cell culture. Oligonucleotides 13:193–205Google Scholar
  109. 109.
    Padie C, Maszewska M, Majchrzak K, Nawrot B, Caminade AM, Majoral JP (2009) Polycationic phosphorus dendrimers: synthesis, characterization, study of cytotoxicity, complexation of DNA, and transfection experiments. New J Chem 33:318–326Google Scholar
  110. 110.
    Kazmierczak-Baranska J, Pietkiewicz A, Janicka M, Wei Y, Turrin CO, Majoral JP, Nawrot B, Caminade AM (2010) Synthesis of a fluorescent cationic phosphorus dendrimer and preliminary biological studies of its interaction with DNA. Nucleosides, Nucleotides and Nucleic Acids 29:155–167 Google Scholar
  111. 111.
    Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 216:136–144Google Scholar
  112. 112.
    Solassol J, Crozet C, Perrier V, Leclaire J, Beranger F, Caminade AM, Meunier B, Dormont D, Majoral JP, Lehmann S (2004) Cationic phosphorus-containing dendrimers reduce prion replication both in cell culture and in mice infected with scrapie. J Gen Virol 85:1791–1799Google Scholar
  113. 113.
    Klajnert B, Cortijo-Arellano M, Cladera J, Majoral JP, Caminade AM, Bryszewska M (2007) Influence of phosphorus dendrimers on the aggregation of the prion peptide PrP 185–208. Biochem Biophys Res Commun 364:20–25Google Scholar
  114. 114.
    Klajnert B, Cangiotti M, Calici S, Ionov M, Majoral JP, Caminade AM, Cladera J, Bryszewska M, Ottaviani MF (2009) Interactions between dendrimers and heparin and their implications for the anti-prion activity of dendrimers. New J Chem 33:1087–1093Google Scholar
  115. 115.
    Klajnert B, Cangiotti M, Calici S, Majoral JP, Caminade AM, Cladera J, Bryszewska M, Ottaviani MF (2007) EPR study of the interactions between dendrimers and peptides involved in Alzheimer’s and prion diseases. Macromol Biosci 7:1065–1074Google Scholar
  116. 116.
    Blanzat M, Turrin CO, Perez E, Rico-Lattes I, Caminade AM, Majoral JP (2002) Phosphorus-containing dendrimers bearing galactosylceramide analogs: Self-assembly properties. Chem Commun 1864–1865Google Scholar
  117. 117.
    Blanzat M, Turrin CO, Aubertin AM, Couturier-Vidal C, Caminade AM, Majoral JP, Rico-Lattes I, Lattes A (2005) Dendritic catanionic assemblies: in vitro anti-HIV activity of phosphorus-containing dendrimers bearing Gal beta(1)cer analogues. Chem Bio Chem 6:2207–2213Google Scholar
  118. 118.
    Pérez-Anes A, Spataro G, Coppel Y, Blanzat M, Turrin C-O, Moog C, Caminade A-M, Rico-Lattes I, Majoral J-P (2009) Phosphonate terminated PPH dendrimers: influence of pendant alkyl chains on the in vitro anti-HIV1 properties. Org Biomol Chem 7:3491–3498Google Scholar
  119. 119.
    Pérez-Anes A, Stefaniu C, Moog C, Majoral JP, Blanzat M, Turrin CO, Caminade AM, Rico-Lattes I (2010) Multivalent catanionic GalCer analogs derived from first generation dendrimeric phosphonic acids. Bioorg Med Chem 18:242–248Google Scholar
  120. 120.
    Spataro G, Malecaze F, Turrin CO, Soler V, Duhayon C, Elena PP, Majoral JP, Caminade AM (2010) Designing dendrimers for ocular drug delivery. Eur J Med Chem 45:326–334Google Scholar
  121. 121.
    Kunzmann V, Bauer E, Feurle J, Weissinger F, Tony HP, Wilhelm M (2000) Stimulation of γδ T cells by aminobisphosphonates and induction of antiplasma cell activity in multiple myeloma. Blood 96:384–392Google Scholar
  122. 122.
    Poupot M, Griffe L, Marchand P, Maraval A, Rolland O, Martinet L, L’Faqihi-Olive FE, Turrin CO, Caminade AM, Fournie JJ, Majoral JP, Poupot R (2006) Design of phosphorylated dendritic architectures to promote human monocyte activation. FASEB J 20:2339–2351Google Scholar
  123. 123.
    Fruchon S, Poupot M, Martinet L, Turrin CO, Majoral JP, Fournie JJ, Caminade AM, Poupot R (2009) Anti-inflammatory and immunosuppressive activation of human monocytes by a bioactive dendrimer. J Leukocyte Biol 85:553–562Google Scholar
  124. 124.
    Rolland O, Griffe L, Poupot M, Maraval A, Ouali A, Coppel Y, Fournie JJ, Bacquet G, Turrin CO, Caminade AM, Majoral JP, Poupot R (2008) Tailored control and optimisation of the number of phosphonic acid termini on phosphorus-containing dendrimers for the ex vivo activation of human monocytes. Chem Eur J 14:4836–4850Google Scholar
  125. 125.
    Griffe L, Poupot M, Marchand P, Maraval A, Turrin CO, Rolland O, Metivier P, Bacquet G, Fournie JJ, Caminade AM, Poupot R, Majoral JP (2007) Multiplication of human natural killer cells by nanosized phosphonate-capped dendrimers. Angew Chem Int Ed 46:2523–2526Google Scholar
  126. 126.
    Marchand P, Griffe L, Poupot M, Turrin CO, Bacquet G, Fournie JJ, Majoral JP, Poupot R, Caminade AM (2009) Dendrimers ended by non-symmetrical azadiphosphonate groups: synthesis and immunological properties. Bioorg Med Chem Lett 19:3963–3966Google Scholar
  127. 127.
    Portevin D, Poupot M, Rolland O, Turrin CO, Fournie JJ, Majoral JP, Caminade AM, Poupot R (2009) Regulatory activity of azabisphosphonate-capped dendrimers on human CD4(+) T cell proliferation enhances ex vivo expansion of NK cells from PBMCs for immunotherapy. J Transl Med 7:82Google Scholar
  128. 128.
    Caminade AM, Laurent R, Turrin CO. Rebout C, Delavaux-Nicot B, Ouali A, Zablocka M, Majoral JP (2010) Phosphorus dendrimers as viewed by 31P NMR spectroscopy; synthesis and characterization. CR Chim 13:1006–1027Google Scholar
  129. 129.
    Lartigue ML, Slany M, Caminade AM, Majoral JP (1996) Phosphorus containing dendrimers. Synthesis of multi-tri or tetra-functionalized macromolecules. Chem Eur J 2:1417–1426Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Anne-Marie Caminade
    • 1
    • 2
  • Jean-Pierre Majoral
    • 1
    • 2
  1. 1.Laboratoire de Chimie de Coordination du CNRSToulouse Cedex 4France
  2. 2.Université de Toulouse, UPS, INP, LCCToulouseFrance

Personalised recommendations