Phosphine-Containing Planar Chiral Ferrocenes: Synthesis, Coordination Chemistry and Applications to Asymmetric Catalysis

  • Eric Manoury
  • Rinaldo Poli
Chapter
Part of the Catalysis by Metal Complexes book series (CMCO, volume 37)

Abstract

Chiral ferrocenyl phosphino ligands are certainly one of the most developed and successful classes of chiral ligands used in asymmetric catalysis. The literature describing their synthetic and coordination chemistry, as well as their metal-mediated applications in the field of catalysis, is extremely rich and varied. Moreover, they represent a rare example in which enantioselective chemical catalysts were used in industrial processes. The present chapter provides an account of the planar-chiral ferrocene ligands developed in the Authors’ laboratory, including their coordination chemistry with various metals as well as their use in different asymmetric catalytic reactions (allylic substitution, Suzuki coupling, methoxycarbonylation of alkenes, hydrogenation of ketones).

References

  1. 1.
    Jacobsen EN, Pfalz A, Yamamoto H (eds) (1999) Comprehensive asymmetric catalysis, vols 1–3. Springer, BerlinGoogle Scholar
  2. 2.
    Ojima I (ed) (2000) Catalytic asymmetric synthesis. Wiley-VCH, New YorkGoogle Scholar
  3. 3.
    Börner A (ed) (2008) Phosphorus ligands in asymmetric catalysis, vols 1–3. Wiley-VCH, WeinheimGoogle Scholar
  4. 4.
    Togni A, Hayashi H (eds) (1995) Ferrocenes. VCH, WeinheimGoogle Scholar
  5. 5.
    Stepnicka P (ed) (2008) Ferrocenes. Wiley, ChichesterGoogle Scholar
  6. 6.
    Gomez Arrayas R, Adrio J, Carretero JC (2006) Recent applications of chiral ferrocene ligands in asymmetric catalysis. Angew Chem Int Ed 45:7674–7715Google Scholar
  7. 7.
    Atkinson RCJ, Gibson VC, Long NJ (2004) The synthesis and catalytic applications of unsymmetrical ferrocene ligands. Chem Soc Rev 33:313–328Google Scholar
  8. 8.
    Colacot TJ (2003) A concise update on the applications of chiral ferrocenyl phosphines in homogeneous catalysis leading to organic synthesis. Chem Rev 103:3101–3118Google Scholar
  9. 9.
    Richards CJ, Locke AJ (1998) Recent advances in the generation of non-racemic ferrocene derivatives and their application to asymmetric synthesis. Tetrahedron Asym 9:2377–2407Google Scholar
  10. 10.
    Balavoine GGA, Daran J-C, Iftime G, Manoury E, Moreau-Bossuet C (1998) Selective synthesis of ferrocenes. J Organomet Chem 567:191–198Google Scholar
  11. 11.
    Riant O, Kagan HB (1997) In: Hassner A (ed) Advances in asymmetric synthesis, vol 1. Jai Press, Greenwich, p 189Google Scholar
  12. 12.
    Togni A (1996) Planar-chiral ferrocenes: synthetic methods and applications. Angew Chem Int Ed 35:1475–1477Google Scholar
  13. 13.
    Sawamura M, Nakayama Y, Kato T, Ito Y (1995) Gold(I)-catalyzed asymmetric aldol reaction of N-methoxy-N-methyl-alpha-isocyanoacetamide (alpha-isocyano Weinreb amide)—an efficient synthesis of optically-active beta-hydroxy-alpha-amino aldehydes and ketones. J Org Chem 60:1727–1732Google Scholar
  14. 14.
    Sawamura M, Sudoh M, Ito Y (1996) An enantioselective two-component catalyst system: Rh–Pd-catalyzed allylic alkylation of activated nitriles. J Am Chem Soc 118:3309–3310Google Scholar
  15. 15.
    Kuwano R, Miyazaki H, Ito Y (1998) Asymmetric aldol reaction of 2-cyanopropionates catalysed by trans-chelating chiral diphosphine ligand TRAP-rhodium(I) complex. Chem Commun 71–72Google Scholar
  16. 16.
    Kuwano R, Uemura T, Saitoh M, Ito Y (1999) Synthesis of a trans-chelating chiral diphosphine ligand with only planar chirality and its application to asymmetric hydrosilylation of ketones. Tetrahedron Lett 40:1327–1330Google Scholar
  17. 17.
    Kuwano R, Sato K, Kurokawa T, Karube D, Ito Y (2000) Catalytic asymmetric hydrogenation of heteroaromatic compounds, indoles. J Am Chem Soc 122:7614–7615Google Scholar
  18. 18.
    Blaser H-U, Brieden W, Pugin B, Spindler F, Studer M, Togni A (2002) Solvias Josiphos ligands: from discovery to technical applications. Top Catal 19:3–16Google Scholar
  19. 19.
    Blaser H-U (2002) The chiral switch of (S)-metolachlor: a personal account of an industrial odyssey in asymmetric catalysis. Adv Synth Catal 344:17–31Google Scholar
  20. 20.
    Ireland T, Grossheimann G, Wieser-Jeunesse C, Knochel P (1999) Ferrocenyl ligands with two phosphanyl substituents in the alpha, epsilon positions for the transition metal catalyzed asymmetric hydrogenation of functionalized double bonds. Angew Chem Int Ed 38:3212–3215Google Scholar
  21. 21.
    Lotz M, Polborn K, Knochel P (2002) New ferrocenyl ligands with broad applications in asymmetric catalysis. Angew Chem Int Ed 41:4708–4711Google Scholar
  22. 22.
    Spindler F, Malan C, Lotz M, Kesselgruber M, Pittelkow U, Rivas-Nass A, Briel O, Blaser HU (2004) Modular chiral ligands: the profiling of the Mandyphos and Taniaphos ligand families. Tetrahedron Asym 15:2299–2306Google Scholar
  23. 23.
    Sturm T, Weissensteiner W, Spindler F (2003) A novel class of ferrocenyl-aryl-based diphosphine ligands for Rh- and Ru-catalysed enantioselective hydrogenation. Adv Synth Catal 345:160–164Google Scholar
  24. 24.
    McManus A, Guiry PJ (2004) Recent developments in the application of oxazoline-containing ligands in asymmetric catalysis. Chem Rev 104:4151–4202Google Scholar
  25. 25.
    Schnyder A, Hintermann L, Togni A (1995) Strong electronic effects on enantioselectivity in rhodium-catalyzed hydroborations with novel pyrazole-containing ferrocenyl ligands. Angew Chem Int Ed 34:931–933Google Scholar
  26. 26.
    Togni A, Buckardt U, Gramlich V, Pregosin PS, Salzman R (1996) Palladium-catalyzed asymmetric allylic amination using ferrocenyl pyrazole ligands: steric control of eta(3)-allyl configuration and site-selective nucleophilic attack. J Am Chem Soc 118:1031–1037Google Scholar
  27. 27.
    Pioda G, Togni A (1998) Highly enantioselective palladium-catalyzed hydrosilylation of norbornene with trichlorosilane using ferrocenyl ligands. Tetrahedron Asym 9:3903–3910Google Scholar
  28. 28.
    Sutcliffe OB, Bryce MR (2003) Planar chiral 2-ferrocenyloxazolines and 1,1′-bis(oxazolinyl)ferrocenes-syntheses and applications in asymmetric catalysis. Tetrahedron Asym 14:2297–2325Google Scholar
  29. 29.
    Cabrera S, Mancheno OG, Arrayas RG, Alonso I, Mauleon P, Carretero JC (2006) Sulfenylphosphinoferrocenes: novel planar chiral ligands in enantioselective catalysis. Pure Appl Chem 78:257–265Google Scholar
  30. 30.
    Hu XP, Zheng Z (2005) Practical Rh(I)-catalyzed asymmetric hydrogenation of β-(acylamino) acrylates using a new unsymmetrical hybrid ferrocenylphosphine−phosphoramidite ligand: crucial Influence of an N−H Proton in the ligand. Org Lett 7:419–422Google Scholar
  31. 31.
    Kuwano R, Kaneda K, Ito T, Sato K, Kurokawa T, Ito Y (2004) Highly enantioselective synthesis of chiral 3-substituted indolines by catalytic asymmetric hydrogenation of indoles. Org Lett 6:2213–2215Google Scholar
  32. 32.
    Kloetzing RJ, Lotz M, Knochel P (2003) New P,N-ferrocenyl ligands for rhodium-catalyzed hydroboration and palladium-catalyzed allylic alkylation. Tetrahedron Asym 14:255–264Google Scholar
  33. 33.
    Sadow AD, Togni A (2005) Enantioselective addition of secondary phosphines to methacrylonitrile: catalysis and mechanism. J Am Chem Soc 127:17012–17024Google Scholar
  34. 34.
    Tu T, Deng W-P, Hou X-L, Dai L-X, Dong X-W (2003) The regioselectivity of the asymmetric intermolecular Heck reaction with planar chiral diphosphine-oxazoline ferrocenyl ligands. Chem Eur J 9:3073–3081Google Scholar
  35. 35.
    Tu T, Hou X-L, Dai L-X (2003) Highly regio- and enantioselective Heck reaction of N-methoxycarbonyl-2-pyrroline with planar chiral diphosphine-oxazoline ferrocenyl ligands. Org Lett 5:3651–3653Google Scholar
  36. 36.
    Lautens M, Fagnou K, Yeng D (2003) Rhodium-catalyzed asymmetric ring opening reactions of oxabicyclic alkenes: application of halide effects in the development of a general process. J Am Chem Soc 125:14884–14892Google Scholar
  37. 37.
    Cho Y-H, Zunic V, Senboku H, Olsen M, Lautens M (2006) Rhodium-catalyzed ring-opening reactions of N-Boc-azabenzonorbornadienes with amine nucleophiles. J Am Chem Soc 128:6837–6848Google Scholar
  38. 38.
    Garcia Mancheno O, Gomez Arrayas R, Carretero J-C (2005) Palladium complexes of chiral planar 1-phosphino-2-sulfenylferrocenes as efficient catalysts in enantioselective Diels-Alder reactions. Organometallics 24:557–561Google Scholar
  39. 39.
    Fukuzawa S-I, Yahara Y, Kamiyana A, Hara M, Kikuchi S (2005) Stereoselective pinacol coupling of chiral formylferrocene using divalent samarium triflate: preparation of a new chiral bisferrocenyl oxazoline ligand and its application to asymmetric Diels–Alder reactions. Org Lett 7:5809–5812Google Scholar
  40. 40.
    Garcia Mancheno O, Gomez Arrayas R, Carretero J-C (2004) Chiral copper complexes of phosphino sulfenyl ferrocenes as efficient catalysts for enantioselective formal Aza Diels–Alder reactions of N-sulfonyl imines. J Am Chem Soc 126:456–457Google Scholar
  41. 41.
    Hayashi T, Mise T, Fukushima M, Kagotani M, Nagashima N, Hamada Y, Matsumoto A, Kawakami S, Konishi M, Yamamoto K, Kumada M (1980) Asymmetric synthesis catalyzed by chiral ferrocenylphosphine-transition metal complexes. I. Preparation of chiral ferrocenylphosphines. Bull Chem Soc Jpn 53:1138–1151Google Scholar
  42. 42.
    Riant O, Samuel O, Kagan HB (1993) A general asymmetric synthesis of ferrocenes with planar chirality. J Am Chem Soc 115:5835–5836Google Scholar
  43. 43.
    Riant O, Samuel O, Flessner T, Taudien S, Kagan HB (1997) An efficient asymmetric synthesis of 2-substituted ferrocenecarboxaldehydes. J Org Chem 62:6733–6745Google Scholar
  44. 44.
    Xiao L, Mereiter K, Weissensteiner W, Wildham M (1999) A practicable synthesis of enantiopure 2-aminomethyl-1-bromo- and 2-aminomethyl-1-iodoferrocenes. Synthesis 8:1354–1362Google Scholar
  45. 45.
    Mourgues S, Serra D, Lamy F, Vincendeau S, Daran J-C, Manoury E, Gouygou M (2003) Chiral [(dialkylamino)methyl](phospholyl)ferrocene ligands as a new class of 1,2-disubstituted ferrocene ligands. Eur J Inorg Chem 2820–2826Google Scholar
  46. 46.
    Lopez Cortes JG, Ramon O, Vincendeau S, Serra D, Lamy F, Daran J-C, Manoury E, Gouygou M (2006) New chiral ferrocenyl phosphole–phosphane ligands. Eur J Inorg Chem 5148–5157Google Scholar
  47. 47.
    Mateus N, Routaboul L, Daran J-C, Manoury E (2006) Synthesis and catalytic applications of new chiral ferrocenyl P,O ligands. J Organomet Chem 691:2297–2310Google Scholar
  48. 48.
    Murray SG, Hartley FR (1981) Coordination chemistry of thioethers, selenoethers, and telluroethers in transition–metal complexes. Chem Rev 81:365–414Google Scholar
  49. 49.
    Dilworth JR, Wheatley N (2000) The preparation and coordination chemistry of phosphorus–sulfur donor ligands. Coord Chem Rev 199:89–158Google Scholar
  50. 50.
    Bayon JC, Claver C, Masdeu-Bulto AM (1999) Homogeneous catalysis with transition metal complexes containing sulfur ligands. Coord Chem Rev 193–195:73–145Google Scholar
  51. 51.
    Masdeu-Bulto AM, Dieguez M, Martin E, Gomez M (2003) Chiral thioether ligands: coordination chemistry and asymmetric catalysis. Coord Chem Rev 242:159–201Google Scholar
  52. 52.
    Mellah M, Voituriez A, Schulz E (2007) Chiral sulfur ligands for asymmetric catalysis. Chem Rev 107:5133–5209Google Scholar
  53. 53.
    Pellissier H (2007) Chiral sulfur-containing ligands for asymmetric catalysis. Tetrahedron 63:1297–1330Google Scholar
  54. 54.
    Malacea R, Manoury E (2008) Phosphorus–sulfur ligands. In: Börner A (ed) Phosphorus ligands in asymmetric catalysis, vols 1–3. Wiley-VCH, WeinheimGoogle Scholar
  55. 55.
    Combs CS, Ashmore CI, Bridges AF, Swanson CR, Stephens W (1969) Reactions of hydroxymethylferrocene. II. Sulfides. J Org Chem 34:1511–1512Google Scholar
  56. 56.
    Ratajczaj A, Krzykawski J (1987) Synthesis of dithia-(1,2)ferrocenophanes and tetrathia-(1,2)Ferrocenophanes by the reactions of 1,2-di(hydroxymethyl)ferrocene with alpha, omega, alpha, omega-alkanedithiols. Gazz Chim Ital 117:533–537Google Scholar
  57. 57.
    Beer PD, Nation JE, Harman ME, Hursthouse MB (1992) Synthesis, electrochemistry and complexation studies of new redox active bisferrocene acyclic and macrocyclic thioethers. J Organomet Chem 441:465–477Google Scholar
  58. 58.
    Cais M, Eisenstadt A (1965) Organometallic studies. X. Reductive dimerization of alpha-metallocenylcarbonium ions. I. J Org Chem 30:1148–1154Google Scholar
  59. 59.
    Allenmark S (1974) Synthetic use of alpha-ferrocebylcarbonium tetrafluoroborates. Tetrahedron Lett 13:371–374Google Scholar
  60. 60.
    Ceccon A, Gambaro A, Paolucci D, Venzo A (1983) Nucleophilic-addition of the thiocyanate ion to ferrocenyl-stabilized carbocations. Polyhedron 2:183–184Google Scholar
  61. 61.
    Richards CJ, Hibbs D, Hursthouse MB (1994) Stereoselective addition of silyl enol ethers to alpha-ferrocenylcarbenium ions. Tetrahedron Lett 35:4215–4218Google Scholar
  62. 62.
    Taudien S, Riant O, Kagan HB (1995) Synthesis of chiral carbocations linked to a ferrocene unit. Tetrahedron Lett 36:3513–3516Google Scholar
  63. 63.
    Brunner H, Taudien S, Riant O, Kagan HB (1997) Stereoselective synthesis of some chiral alpha-ferrocenyl carbenium ions. Chirality 9:478–486Google Scholar
  64. 64.
    Routaboul L, Vincendeau S, Daran J-C, Manoury E (2005) New ferrocenyl P,S and S,S ligands for asymmetric catalysis. Tetrahedron Asym 16:2685–2690Google Scholar
  65. 65.
    Audin C, Daran J-C, Deydier E, Manoury E, Poli R (2010) New ferrocenyl P,O ligands with polar substituents. R C R Chimie 13:890–899Google Scholar
  66. 66.
    Midura WH, Krysiak J, Manoury E, Daran J-C, manuscript in preparationGoogle Scholar
  67. 67.
    Majoral J-P, Caminade A-M (1999) Dendrimers containing heteroatoms (Si, P, B, Ge, or Bi). Chem Rev 99:845–880Google Scholar
  68. 68.
    Turrin C-O, Chiffre J, de Montauzon D, Daran J-C, Caminade A-M, Manoury E, Balavoine GGA, Majoral J-P (2000) Phosphorus-containing dendrimers with ferrocenyl units at the core within the branches and on the periphery. Macromolecules 33:7328–7336Google Scholar
  69. 69.
    Turrin C-O, Chiffre J, de Montauzon D, Daran J-C, Caminade A-M, Manoury E, Balavoine GGA, Majoral J-P (2001) New chiral phosphorus-containing dendrimers with ferrocenes on the periphery. Tetrahedron 57:2521–2536Google Scholar
  70. 70.
    Turrin C-O, Chiffre J, de Montauzon D, Balavoine G, Manoury E, Caminade A-C, Majoral J-P (2002) Behavior of an optically active ferrocene chiral shell located within phosphorus-containing dendrimers. Organometallics 21:1891–1897Google Scholar
  71. 71.
    Turrin C-O, Chiffre J, de Montauzon D, Balavoine G, Manoury E, Caminade A-C, Majoral J-P (2002) New phosphorus-containing dendrimers with ferrocenyl units in each layer. Comptes Rendus Chimie 5:309–318Google Scholar
  72. 72.
    Routaboul L, Vincendeau S, Turrin C-O, Caminade A-M, Majoral J-P, Daran J-C, Manoury E (2007) New phosphorus dendrimers with chiral ferrocenyl phosphine-thioether ligands on the periphery for asymmetric catalysis. J Organomet Chem 692:1064–1073Google Scholar
  73. 73.
    Lopez Cortes JG, Vincendeau S, Daran J-C, Manoury E, Gouygou M (2006) New enantiomerically pure ferrocenyl phosphole compounds. Acta Crystallogr C C62:m188–m191Google Scholar
  74. 74.
    Labande A, Daran J-C, Manoury E, Poli R (2007) 1,1′- and 1,2-ferrocenyl phosphine-diaminocarbene ligands: synthesis, Rh(I) complexes. Eur J Inorg Chem 1205–1209Google Scholar
  75. 75.
    Sharpless KB, Akashi K, Oshima K (1976) Ruthenium catalyzed oxidation of alcohols to aldehydes and ketones by amine-N-oxides. Tetrahedron Lett 29:2503–2506Google Scholar
  76. 76.
    Malacea R, Manoury E, Routaboul L, Daran J-C, Poli R, Dunne JP, Withwood AC, Godard C, Duckett SB (2006) Coordination chemistry and diphenylacetylene hydrogenation catalysis of planar chiral ferrocenylphosphine-thioether ligands with cyclooctadiene iridium(I). Eur J Inorg Chem 1803–1816Google Scholar
  77. 77.
    Malacea R. Daran J-C, Duckett SB, Dunne JP, Manoury E, Poli R, Withwood AC (2006) Parahydrogen studies of H2 addition to Ir(I) complexes containing chiral phosphine-thioether ligands: implications for catalysis. Dalton Trans 3350–3359Google Scholar
  78. 78.
    Malacea R, Routaboul L, Manoury E, Daran J-C, Poli R (2008) Palladium and platinum complexes with planar chiral 1,2-disubstituted ferrocenes containing phosphine and thioether donor groups. J Organomet Chem 693:1469Google Scholar
  79. 79.
    Diab L, Daran J-C, Gouygou M, Manoury E, Urrutigoity M (2007) Dichlorido[(S, RS)-diphenyl-phosphino-2-(ethylsulfanylmethyl)-ferrocene]palladium(II)]. Acta Crystallogr C63:m586–m588Google Scholar
  80. 80.
    Debono N, Labande A, Manoury E, Daran J-C, Poli R (2010) Palladium complexes of planar chiral ferrocenyl phosphine-NHC ligands: new catalysts for the asymmetric Suzuki–Miyaura reaction. Organometallics 29:1879–1882Google Scholar
  81. 81.
    Malacea R, Routaboul L, Manoury E, Daran J-C, Poli R (2008) Synthesis, characterization and crystal structures of two new platinum complexes with planar chiral 1,2-disubstituted ferrocenes containing phosphine and thioether donor groups. J Mol Struct 890:249–254Google Scholar
  82. 82.
    Trost BM, van Vranken DL (1996) Asymmetric transition metal-catalyzed allylic alkylations. Chem Rev 96:395–422Google Scholar
  83. 83.
    Pfalz A, Yamamoto H (2000) In: Ojima I (ed) Catalytic asymmetric synthesis, 2nd edn. Wiley-VCH, New York, pp 834–884Google Scholar
  84. 84.
    Trost BM, Crawley ML (2003) Asymmetric transition-metal-catalyzed allylic alkylations: applications in total synthesis. Chem Rev 103:2921–2943Google Scholar
  85. 85.
    Zhang W, Xu Q, Shi M (2004) Palladium-catalyzed asymmetric allylic substitutions by axially chiral P,S-, S,S-, and S,O-heterodonor ligands with a binaphthalene framework. Tetrahedron Asym 15:3161–3169Google Scholar
  86. 86.
    Faller JW, Wilt JC, Parr J (2004) Kinetic resolution and unusual regioselectivity in palladium-catalyzed allylic alkylations with a chiral P,S ligand. Org Lett 6:1301–1304Google Scholar
  87. 87.
    Faller JW, Wilt JC (2005) Palladium/BINAP(S)-catalyzed asymmetric allylic amination. Org Lett 7:633–636Google Scholar
  88. 88.
    Faller JW, Wilt JC (2005) Regioselectivity in the palladium/(S)-BINAP(S)-catalyzed asymmetric allylic amination: reaction scope, kinetics, and stereodynamics. Organometallics 24:5076–5083Google Scholar
  89. 89.
    Robé E, Perlikowska W, Lemoine C, Diab L, Vincendeau S, Mikolajczyk M, Daran J-C, Gouygou M (2008) Diphosphine sulfides derived from 2,2′-biphosphole: novel chiral S,S ligands for palladium-catalyzed asymmetric allylic substitution. Dalton Trans 2894–2898Google Scholar
  90. 90.
    Okuyama Y, Nakano H, Takahashi K, Hongo H, Kabuto C (2003) Novel and efficient chiral sulfideoxathiane ligands for palladium-catalyzed asymmetric allylic alkylation. Chem Commun 524–525Google Scholar
  91. 91.
    Khiar N, Araujo CS, Alvarez E, Fernandez I (2003) C-2-symmetric bis-thioglycosides as new ligands for palladium-catalyzed allylic substitutions. Tetrahedron Lett 44:3401–3404Google Scholar
  92. 92.
    Okuyama Y, Nakano H, Saito Y, Takahashi K, Hongo H (2005) Chiral sulfideoxathiane ligands for palladium-catalyzed asymmetric allylic alkylation. Tetrahedron Asym 16:2551–2557Google Scholar
  93. 93.
    Khiar N, Araujo CS, Alvarez E, Fernandez I (2006) Sulfur-sulfur-based ligands derived from d-sugars: synthesis of Pd-II complexes, application in palladium-catalyzed allylic alkylation for the synthesis of both members of enantiomer pairs, and structural studies. Eur J Org Chem 1685-1700Google Scholar
  94. 94.
    Dai W-M, Yeung KKY, Liu J-T, Zhang YY, Williams ID (2002) A novel class of nonbiaryl atropisomeric P,O-ligands for palladium-catalyzed asymmetric allylic alkylation. Org Lett 4:1615–1618Google Scholar
  95. 95.
    Tollabi M, Framery E, Goux-Henry C, Sinou D (2003) Palladium-catalyzed asymmetric allylic alkylation using chiral glucosamine-based monophosphines. Tetrahedron Asym 14:3329–3333Google Scholar
  96. 96.
    Gladiali S, Taras R, Ceder RM, Rocamora M, Muller G, Solans X, Font-Bardia M (2004) Asymmetric allylic alkylation catalyzed by Pd(II)-complexes with (S)-BINPO, a hemilabile axially chiral P,O-heterodonor inducer. Tetrahedron Asym 14:1477–1485Google Scholar
  97. 97.
    Jiang B, Huang Z-G (2007) Chiral P,O-ligands derived from N,O-phenylene prolinols for palladium-catalyzed asymmetric allylic alkylation. Tetrahedron Lett 48:1703–1706Google Scholar
  98. 98.
    Marinho VR, Rodrigues AI, Burke AJ (2008) Novel chiral P,O-ligands for homogeneous Pd(0) catalysed asymmetric allylic alkylation reactions. Tetrahedron Asym 19:454–458Google Scholar
  99. 99.
    Gerharzt W (ed) (1985) Ullmann’s encyclopedia of industrial chemistry, vol 3. VCH Weinheim, p 41Google Scholar
  100. 100.
    Wang L, Kwok WH, Chan ASC, Tu T, Hou X, Dai L (2003) Asymmetric hydroesterification of styrene using catalysts with planar-chiral ferrocene oxazoline ligands. Tetrahedron Asym 14:2291–2295Google Scholar
  101. 101.
    Munoz B, Marinetti A, Ruiz A, Castillon S, Claver C (2005) Enhanced regioselectivity in palladium-catalysed asymmetric methoxycarbonylation of styrene using phosphetanes as chiral ligands. Inorg Chem Commun 8:1113–1115Google Scholar
  102. 102.
    Godard C, Ruiz A, Claver C (2006) Systematic study of the asymmetric methoxycarbonylation of styrene catalyzed by palladium systems containing ferrocenyl diphosphine ligands. Helv Chim Act 89:1610–1622Google Scholar
  103. 103.
    Munoz BK, Godard C, Marinetti A, Ruiz A, Benet-Buchholz J, Claver C (2007) Pd-catalysed methoxycarbonylation of vinyl arenes using chiral monodentate phosphetanes and phospholane as ligands; effect of substrate substituents on enantioselectivity. Dalton Trans 5524–5530Google Scholar
  104. 104.
    Godard C, Munoz BK, Ruiz A, Claver C (2008) Pd-catalysed asymmetric mono- and bis-alkoxycarbonylation of vinylarenes. Dalton Trans 853–860Google Scholar
  105. 105.
    Diab L, Gouygou M, Manoury E, Kalck P, Urrutigoïty M (2008) Higly regioselective Palladium-catalyzed methoxycarbonylation of styrene using chiral ferrocene- and biphosphole-based ligands. Tet Lett 49:5186-5189Google Scholar
  106. 106.
    Bolm C, Hildebrand JP, Muniz K, Hermanns N (2001) Catalyzed asymmetric arylation reactions. Angew Chem Int Ed 40:3285–3308Google Scholar
  107. 107.
    Bringmann G, Price Mortimer AJ, Keller PA, Gresser MJ, Garner J, Breuning M (2005) Atroposelective synthesis of axially chiral biaryl compounds. Angew Chem Int Ed 44:5384–5427Google Scholar
  108. 108.
    Baudoin O (2005) The asymmetric Suzuki coupling route to axially chiral biaryls. Eur J Org Chem 20:4223–4229Google Scholar
  109. 109.
    Noyori R (2003) Asymmetric catalysis: science and opportunities (Nobel lecture 2001). Adv Synth Catal 345:15–32Google Scholar
  110. 110.
    Kumobayashi H, Miura T, Sayo N, Saito T, Zang X (2001) Recent advances of BINAP chemistry in the industrial aspects. Synlett 1055–1064Google Scholar
  111. 111.
    Chen Y, Yekta S, Yudin AK (2003) Modified BINOL ligands in asymmetric catalysis. Chem Rev 103:3155–3211Google Scholar
  112. 112.
    Brunel JM (2005) BINOL: a versatile chiral reagent. Chem Rev 105:857–897Google Scholar
  113. 113.
    Hayashi T (2000) Chiral monodentate phosphine ligand MOP for transition-metal-catalyzed asymmetric reactions. Acc Chem Rev 33:354–362Google Scholar
  114. 114.
    Kocovsky P, Vyskocil S, Smrcina M (2003) Non-symmetrically substituted 1,1′-binaphthyls in enantioselective catalysis. Chem Rev 103:3213–3245Google Scholar
  115. 115.
    McCarthy M, Guiry PJ (2001) Axially chiral bidentate ligands in asymmetric catalysis. Tetrahedron 57:3809–3844Google Scholar
  116. 116.
    Shimizu H, Nagasaki I, Saito T (2006) Recent advances in biaryl-type bisphosphine ligands. Tetrahedron 61:5405–5432Google Scholar
  117. 117.
    Cammidge AN, Crépy KVL (2000) The first asymmetric Suzuki cross-coupling reaction. Chem Commun 1723–1724Google Scholar
  118. 118.
    Yin JJ, Buchwald SL (2000) A catalytic asymmetric Suzuki coupling for the synthesis of axially chiral biaryl compounds. J Am Chem Soc 122:12051–12052Google Scholar
  119. 119.
    Genov M, Almorín A, Espinet P (2006) Efficient synthesis of chiral 1,1′-binaphthalenes by the asymmetric Suzuki-Miyaura reaction: dramatic synthetic improvement by simple purification of naphthylboronic acids. Chem Eur J 12:9346–9352Google Scholar
  120. 120.
    Bronger RPJ, Guiry PJ (2007) Aminophosphine-oxazoline and phosphoramidite-oxazoline ligands and their application in asymmetric catalysis. Tetrahedron Asym 18:1094–1102Google Scholar
  121. 121.
    Sawai K, Tatumi R, Nakahodo T, Fujihara H (2008) Asymmetric Suzuki–Miyaura coupling reactions catalyzed by chiral palladium nanoparticles at room temperature. Angew Chem Int Ed 47:6917–6919Google Scholar
  122. 122.
    Bermejo A, Ros A, Fernández R, Lassaletta JM (2008) C-2-symmetric bis-hydrazones as ligands in the asymmetric Suzuki–Miyaura cross-coupling. J Am Chem Soc 130:15798–15799Google Scholar
  123. 123.
    Mori K, Kondo Y, Yamashita H (2009) Synthesis and characterization of FePd magnetic nanoparticles modified with chiral BINAP ligand as a recoverable catalyst vehicle for the asymmetric coupling reaction. Phys Chem Phys 11:8949–8954Google Scholar
  124. 124.
    Uozumi Y, Matsuura Y, Arakawa T, Yamada YMA (2009) Asymmetric Suzuki–Miyaura coupling in water with a chiral palladium catalyst supported on an amphiphilic resin. Angew Chem Int Ed 48:2708–2710Google Scholar
  125. 125.
    Malacea R, Manoury E, Poli R (2010) Asymmetric hydrosilylation, transfer hydrogenation and hydrogenation of ketones catalyzed by iridium complexes. Coord Chem Rev 254:729–752Google Scholar
  126. 126.
    Le Roux E, Malacea R, Manoury E, Poli R, Gonsalvi L, Peruzzini M (2007) Highly efficient asymmetric hydrogenation of alkyl aryl ketones catalyzed by iridium complexes with chiral planar ferrocenyl phosphino-thioether ligands. Adv Synth Catal 349:309–313Google Scholar
  127. 127.
    Dahlenburg L, Goetz R (2004) Iridium complexes with chiral and achiral β-aminophosphane ligands: catalysts for C=O hydrogenation and H/D exchange involving both homo- and heterolytic H2 activation. Eur J Inorg Chem 888–905Google Scholar
  128. 128.
    Dahlenburg L, Goetz R (2004) Functional phosphines. Part XIV. Cationic (P,N)2-coordinated hydrides of iridium(III): catalysts for C=O hydrogenation or transfer hydrogenation? Inorg Chim Acta 357:2875–2880Google Scholar
  129. 129.
    Hayes JM, Ujaque G, Lledós A, Malacea R, Manoury E, Vincendeau S, Poli R, in preparationGoogle Scholar
  130. 130.
    Iron MA, Sundermann A, Martin JML (2003) Catalytic reduction of acetone by (bpy)Rh (+): a theoretical mechanistic investigation and insight into cooperativity effects in this system. J Am Chem Soc 125:11430–11441Google Scholar
  131. 131.
    Tollner K, Popovitzbiro R, Lahav M, Milstein D (1997) Impact of molecular order in Langmuir–Blodgett films on catalysis. Science 278:2100–2102Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Eric Manoury
    • 1
    • 2
  • Rinaldo Poli
    • 1
    • 2
    • 3
  1. 1.CNRS, LCC (Laboratoire de Chimie de Coordination)ToulouseFrance
  2. 2.UPS, INPT, LCCUniversité de ToulouseToulouseFrance
  3. 3.Institut Universitaire de FranceParisFrance

Personalised recommendations