Microbial Mats pp 131-148

Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 14) | Cite as

Osmotrophic Biofilms: From Modern to Ancient

  • Martin D. Brasier
  • Richard H. T. Callow
  • Latha R. Menon
  • Alexander G. Liu


We here explore the potential of nonphotosynthetic microbes as significant players in the formation and preservation of structures such as microbial mats and soil-like networks. In particular, we focus on organisms such as actinobacteria and fungi, known to feed by osmotic absorption of preformed organic compounds, which we collectively refer to as “osmotrophs” here. We show that they have a fossil record that may be traced far back into the Proterozoic in a range of sedimentary environments.


  1. Allwood, A.C., Walter, M.R., Kamber, B.S., Marshall, C.P. and Burch, I.W. (2006) Stromatolite reef from the Early Archaean era of Australia. Nature 441: 714–718.PubMedCrossRefGoogle Scholar
  2. Ascaso, C., Wierzchos, J., Speranza, M., Gutiérrez, J.C., Martín-González, A., De Los Rios, A. and Alonso, J. (2005) Fossil protists and fungi in amber and rock substrates. Micropaleontology 51: 59–72.Google Scholar
  3. Barton, H.A. and Northup, D.E. (2007) Geomicrobiology in cave environments: past, current and future perspectives. J. Cave Karst Stud. 69: 163–178.Google Scholar
  4. Boston, P.J., Spilde, M.N., Northup, D.E., Melim, L.A., Soroka, D.S., Kleina, L.G., Lavoie, K.H., Hose, L.D., Mallory, L.M., Dahm, C.N., Crossey, L.J. and Schelble, R.T. (2001) Cave biosignature suites: microbes, minerals, and Mars. Astrobiology 1: 25–55.PubMedCrossRefGoogle Scholar
  5. Boynton, H.E. and Ford, T.D. (1995). Ediacaran fossils from the Precambrian (Charnian supergroup) of Charnwood Forest, Leicestershire, England. Mercian Geologist 13: 165–182.Google Scholar
  6. Brasier, M.D. (2009) Darwin’s Lost World. The Hidden History of Animal Life. Oxford University Press, Oxford.Google Scholar
  7. Brasier, M.D. and Callow, R.H.T. (2007) Changes in the patterns of phosphatic preservation across the Proterozoic–Cambrian transition. Mem. Assoc. Austral. Palaeontol. 34: 377–389.Google Scholar
  8. Brasier, M.D., Cotton, L. and Yenney, I. (2010). First report of amber with spider web and microbial inclusions from the earliest Cretaceous (∼140 Ma) of Hastings, Sussex. J. Geol. Soc. London. (in press)Google Scholar
  9. Breton, G. (2007). La bioaccumulation de microorganismes dans l’ambre: analyse comparée d’un ambre cénomanien et d’un ambre sparnacien, et de leurs tapis algaires et bactériens. C. R. Palevol. 6: 125–133.CrossRefGoogle Scholar
  10. Butterfield, N.J. (2005). Probable Proterozoic fungi. Paleobiology 31: 165–182.CrossRefGoogle Scholar
  11. Callow, R.H.T. and Brasier, M.D. (2009) A solution to Darwin’s dilemma of 1859: exceptional preservation in Salter’s material from the late Ediacaran Longmyndian Supergroup, England. J. Geol. Soc. London 166: 1–4.CrossRefGoogle Scholar
  12. Campbell, B.J., Engel, A.S., Porter, M.L. and Takai, K. (2006) The versatile ε-proteobacteria: key players in sulphidic habitats. Nature 4: 458–468.Google Scholar
  13. Cañaveras, J.C., Sanchez-Moral, S., Soler, V. and Saiz-Jimenez, C. (2001) Microorganisms and microbially induced fabrics in cave walls. Geomicrobiol. J. 18: 223–240.CrossRefGoogle Scholar
  14. Cañaveras, J.C., Cuezva, S., Sanchez-Moral, S., Lario, J., Laiz, L., Gonzalez, J.M. and Saiz-Jimenez, C. (2006) On the origin of fiber calcite crystals in moonmilk deposits. Naturwissenschaften 93: 27–32.PubMedCrossRefGoogle Scholar
  15. Costerton, J.W. and Stoodley, P. (2003) Microbial biofilms: protective niches in ancient and modern geomicrobiology, In: W.E. Krumbein, D.M. Paterson and G.A. Zavarzin (eds.) Fossil and Recent Biofilms. Kluwer, Dordrecht, pp. xv–xxi.Google Scholar
  16. Cunningham, K.L., Northup, D.E., Pollastro, R.M., Wright, W.G. and Larock, E.J. (1995) Bacteria, fungi and biokarst in Luchuguilla Cave, Carlsbad Caverns National Park, New Mexico. Environ. Geol. 25: 2–8CrossRefGoogle Scholar
  17. Davis, D.G. (2000) Extraordinary features of Lechuguilla Cave, Guadalupe Mountains, New Mexico. J. Cave Karst Stud. 62: 147–157.Google Scholar
  18. Dorfelt, H. and Schmidt, A.R. (2005) A fossil Aspergillus from Baltic amber. Mycol. Res. 109: 956–960.PubMedCrossRefGoogle Scholar
  19. Duane, M.J. (2003) Unusual preservation of crustaceans and microbial colonies in a vadose zone, northwest Morocco. Lethaia 36: 21–32.CrossRefGoogle Scholar
  20. Dupont, J., Jacquet, C., Dennetiérre, B., Lacoste, S., Bousta, F., Orial, G., Cruard, C., Couloux, A. and Roquebert, M. (2007) Invasion of the French Paleolithic painted cave of Lascaux by members of the Fusarium solani species complex. Mycologia 99: 526–533.PubMedCrossRefGoogle Scholar
  21. Dzik, J. (2003) Anatomical information content in the Ediacaran fossils and their possible zoological affinities. Integr. Comp. Biol. 43: 114–126.PubMedCrossRefGoogle Scholar
  22. Egemeier, S.J. (1981) Cavern development by thermal waters. Nat. Speleol. Soc. Bull. 43: 31–51.Google Scholar
  23. Engel, A.S. (2007) Observations on the biodiversity of sulfidic karst habitats. J. Cave Karst Stud. 69: 187–206.Google Scholar
  24. Engel, A.S., Porter, M.L., Stern, L.A., Quinlan, S. and Bennett, P.C. (2004a) Bacterial diversity and ecosystem function of filamentous microbial mats from aphotic (cave) sulfidic springs dominated by chemolithoautotrophic “Epsilonproteobacteria”. FEMS Microbiol. Ecol. 51: 31–53.PubMedCrossRefGoogle Scholar
  25. Engel, A.S., Stern, L.A. and Bennett, P.C. (2004b) Microbial contributions to cave formation: new insights into sulfuric acid speleogenesis. Geology 32: 369–372.CrossRefGoogle Scholar
  26. Gehling, J.G. (1999) Microbial mats in terminal Proterozoic siliciclastics: Ediacaran death masks. Palaios 14: 40–57.CrossRefGoogle Scholar
  27. Golubic, S. and Schneider, J. (2003) Microbial endoliths as internal biofilms, In: W.E. Krumbein, D.M. Paterson and G.A. Zavarzin (eds.) Fossil and Recent Biofilms. Kluwer, Dordrecht, pp. 249–264.Google Scholar
  28. Grotzinger, J.P. and Knoll, A.H. (1999) Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks? Annu. Rev. Earth Planet. Sci. 27: 313–358.PubMedCrossRefGoogle Scholar
  29. Heckman, D.S., Geiser, D.M., Eidell, B.R., Stauffer, R.L., Kardos, N.L. and Hedges, S.B. (2001) Molecular evidence for the early colonization of land by fungi and plants. Science 293: 1129–1133.PubMedCrossRefGoogle Scholar
  30. Hose, L.D. and Pisarowicz, J.A. (1999) Cueva de Villa Luz, Tabasco, Mexico: reconnaissance study of an active sulfur spring cave and ecosystem. J Cave Karst Stud. 61: 13–21.Google Scholar
  31. Hose, L.D., Palmer, A.N., Palmer, M.V., Northup, D.E., Boston, P.J. and Duchene, H.R. (2000) Microbiology and geochemistry in a hydrogen-sulphide-rich karst environment. Chem. Geol. 169: 399–423.CrossRefGoogle Scholar
  32. Jagnow, D.H., Hill, C.A., Davis, D.G., Duchene, H.R., Cunningham, K.I., Northup, D.E. and Queen, J.M. (2000) History of the sulfuric acid theory of speleogenesis in the Guadalupe Mountains, New Mexico. J. Cave Karst Stud. 62: 54–59.Google Scholar
  33. Jannasch, H.W. (1985) The chemosynthetic support of life and the microbial diversity at deep-sea hydrothermal vents. Proc. Roy. Soc. London B 225: 277–297.CrossRefGoogle Scholar
  34. Karl, D.M., Wirsen, C.O. and Jannasch, H.W. (1980) Deep-sea primary production at the Galapagos hydrothermal vents. Science 207: 1345–1347.Google Scholar
  35. Kinkle, B.K. and Kane, T.C. (2000) Chemolithoautotrophic microorganisms and their potential role in subsurface environments, In: H. Wilkens, D. Culver and W.F. Humphreys (eds.) Ecosystems of the World: Subterranean Ecosystems. Elsevier, Amsterdam, pp. 309–318.Google Scholar
  36. Kretzschmar, M. (1982) Fossile Pilze in Eisen-Stromatolithen von Warstein (Rheinisches Schiefergebirge). Facies 7: 237–260.CrossRefGoogle Scholar
  37. Hose, L.D. and Pisarowicz, J.A. (1999) Cueva de Villa Luz, Tabasco, Mexico: reconnaissance study of an active sulfur spring cave and ecosystem. J. Cave Karst Stud. 61: 13–21.Google Scholar
  38. Krumbein, W.E., Paterson, D.M. and Zavarzin, G.A. (eds.) (2003) Fossil and Recent Biofilms. Kluwer, Dordrecht, 482 pp.Google Scholar
  39. Lascu, C., Popa, R., Sarbu, S.M., Vlasceanu, L. and Prodan, S. (1993) La grotte de Movile: une faune hors du temps. La Réchérche 258: 1092–1098.Google Scholar
  40. Lecointre, G. and Guyader, H.L. (2006) The Tree of Life. Belknap Press, Harvard, 560 pp.Google Scholar
  41. Levin, L.A. (2005) Ecology of cold seep sediments: interactions of fauna with flow, chemistry and microbes. Oceanogr. Mar. Biol. Annu. Rev. 43: 1–46.CrossRefGoogle Scholar
  42. Liu, A.G., McIlroy, D., Antcliffe, J.B. and Brasier, M.D. (2010) Post-mortem decay of the Avalonian Ediacara biota and its implications for the early fossil record (in press).Google Scholar
  43. Macaladay, J.L., Jones, D.S. and Lyon, E.H. (2007) Extremely acidic, pendulous cave wall biofilms from the Frasassi cave system, Italy. Environ. Microbiol. 9: 1402–1414.CrossRefGoogle Scholar
  44. Margulis, L. and Schwartz, K.V. (1988) The Five Kingdoms. W.H. Freeman, New York.Google Scholar
  45. Martín-González, A., Wierzchos, J., Gutiérrez, J.C., Alonso, J. and Ascaso, C. (2009) Microbial Cretaceous park: biodiversity of microbial fossils entrapped in amber. Naturwissenschaften 96: 551–564.PubMedCrossRefGoogle Scholar
  46. Mattison, R.G., Abbiati, M., Dando, P.R., Fitzsimons, M.F., Pratt, S.M., Southward, A.J. and Southward, E.C. (1998) Chemoautotrophic microbial mats in submarine caves with hydrothermal sulphidic springs at Cape Palinuro, Italy. Microb. Ecol. 35: 58–71.PubMedCrossRefGoogle Scholar
  47. McIlroy, D., Crimes, T.P. and Pauley, J.C. (2005) Fossils and matgrounds from the Neoproterozoic Longmyndian Supergroup, Shropshire, UK. Geol. Mag. 142: 441–455.CrossRefGoogle Scholar
  48. Narbonne, G.M., Dalrymple, R.W., LaFlamme, M., Gehling, J.G. and Boyce, W.D. (2005) Life After Snowball: Mistaken Point Biota and the Cambrian of the Avalon. North American Paleontological Convention Field Trip Guidebook, Halifax, Nova Scotia.Google Scholar
  49. Néraudeau, D., Perrichot, V., Colin, J.-P., Girard, V., Gomez, B., Guillocheau, F., Masure, E., Peyrot, D., Tostain, F., Videt, B. and Vullo, R. (2008) A new amber deposit from the Cretaceous (uppermost Albian-lowermost Cenomanian) of southwestern France. Cretaceous Res. 29: 925–929.CrossRefGoogle Scholar
  50. Neu, T.R., Eitner, A. and Paje, M.L. (2003) Development and architecture of complex environmental biofilms – lotic biofilm systems, In: W.E. Krumbein, D.M. Paterson and G.A. Zavarzin (eds.) Fossil and Recent Biofilms. Kluwer, Dordrecht, pp. 29–45.Google Scholar
  51. Noffke, N., Gerdes, G., Klenke, T. and Krumbein, W.E. (2001) Microbially induced sedimentary structures – a new category within the classification of primary sedimentary structures. J. Sed. Res. 7: 649–656.CrossRefGoogle Scholar
  52. Noffke, N., Eriksson, K.A., Hazen, R.M. and Simpson, E.L. (2006) A new window into Early Archean life: Microbial mats in Earth’s oldest siliciclastic tidal deposits (3.2 Ga Moodies Group, South Africa). Geology 34: 253–256.CrossRefGoogle Scholar
  53. Northup, D.E. and Lavoie, K.H. (2001) Geomicrobiology of caves: a review. Geomicrobiol. J. 18: 199–222.CrossRefGoogle Scholar
  54. Peat, C. (1984) Precambrian microfossils from the Longmyndian of Shropshire. Proc. Geol. Assoc. 5: 17–22.CrossRefGoogle Scholar
  55. Poinar, G.O. and Milki, R. (2001) Lebanese Amber: The Oldest Insect Ecosystem in Fossilized Resin. Oregon State University Press, Corvallis, OR.Google Scholar
  56. Porter, M.L., Engel, A.S., Kane, T.C. and Kinkle, B.K. (2009) Productivity–diversity relationships from chemolithoautotrophically based sulfidic karst systems. Int. J. Speleol. 38: 27–40.CrossRefGoogle Scholar
  57. Poulson, T.L. and Lavoie, K.H. (2000) The trophic basis of subsurface ecosystems, In: H. Wilkens, D.C. Culver and W.F. Humphreys (eds.) Ecosystems of the World: Subterranean Ecosystems. Elsevier, Amsterdam, pp. 231–249.Google Scholar
  58. Preat, A., Kolo, K., Mamet, B., Gorbushina, A.A. and Gillian, D.C. (2003) Fossil and subrecent fungal communities in three calcrete series from the Devonian Canadian Rocky Mountains, Carboniferous of northern France and Cretaceous of central Italy, In: W.E. Krumbein, D.M. Paterson and G.A. Zavarzin (eds.) Fossil and Recent Biofilms. Kluwer, Dordrecht, pp. 291–306.Google Scholar
  59. Rasmussen, B. (2000) Filamentous microfossils in a 3,235-million-year-old volcanogenic massive sulphide deposit. Nature 405: 676–679.PubMedCrossRefGoogle Scholar
  60. Reitner, J., Schumann, G. and Pedersen, K. (2006) Fungi in biogeochemical cycles, In: G.M. Gadd (ed.) Fungi in Biogeochemical Cycles. Cambridge University Press, Cambridge, pp. 377–403.CrossRefGoogle Scholar
  61. Ross, I.K. (2006) Fungal lives, In: J. Seckbach (ed.) Life as We Know It. Springer, Dordrecht, pp. 55–73.Google Scholar
  62. Sarbu, S.M., Vlasceanu, L., Popa, R., Sheridan, P., Kinkle, B.K. and Kane, T.C. (1994) Microbial mats in a thermomineral sulfurous cave, In: L.J. Stal and P. Caumette (eds.) Microbial Mats: Structure, Development, and Environmental Significance. Springer, Berlin, pp. 45–50.CrossRefGoogle Scholar
  63. Schieber, J., Bose, P.K., Eriksson, P.G., Banerjee, S., Sarkar, S., Altermann, W. and Catuneanu, O. (eds.) (2007) Atlas of Microbial Mat Features Preserved Within the Siliciclastic Rock Record. Elsevier, Amsterdam, 311 pp.Google Scholar
  64. Schmidt, A.R. and Dorfelt, H. (2007) Evidence of Cenozoic Matoniaceae from Baltic and Bitterfeld amber. Rev. Palaeobot. Palynol. 144: 145–156.CrossRefGoogle Scholar
  65. Schmidt, A.R. and Schäfer, U. (2005) Leptotrichites resinatus new genus and species, a fossil sheathed bacterium in alpine Cretaceous amber. J. Paleontol. 79: 175–184.CrossRefGoogle Scholar
  66. Schmidt, A.R., Ragazzi, E., Coppellotti, O. and Roghi, G. (2006) A microworld in Triassic amber. Nature 444: 835.PubMedCrossRefGoogle Scholar
  67. Schopf, J.W. and Klein, C. (1992) The Proterozoic Biosphere. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
  68. Schopf, J.W., Zhu, W.-Q., Xu, Z.-L. and Hse, J. (1984) Proterozoic stromatolitic mmicrobiotas of the 1400–1500 Ma-old Gaoyuzhuang formation near Jixian, northern China. Precambrian Res. 24: 335–349.PubMedCrossRefGoogle Scholar
  69. Stolz, J.F. (2003) Structure of marine biofilms – flat laminated mats and modern marine stromatolites, In: W.E. Krumbein, D.M. Paterson and G.A. Zavarzin (eds.) Fossil and Recent Biofilms. Kluwer, Dordrecht, pp. 65–76.Google Scholar
  70. Trewin, N.H. and Rice, C.M. (eds.) (2004) The Rhynie hot-spring system: geology, biota and mineralization. Trans. R. Soc. Edinb. Earth Sci. 94, 239 pp.Google Scholar
  71. Varnam, A.H. and Evans, M.G. (2000) Environmental Microbiology. Manson Publishing, London, 160 pp.Google Scholar
  72. Verrecchia, E.P. and Verrecchia, K.E. (1994) Needle-fiber calcite: a critical review and proposed classification. J. Sed. Res. A64: 650–664.Google Scholar
  73. Verrecchia, E.P., Loisy, C., Braissant, O. and Gorbushina, A.A. (2003) The role of fungal biofilm and networks in the terrestrial calcium carbonate cycle, In: W.E. Krumbein, D.M. Paterson and G.A. Zavarzin (eds.) Fossil and Recent Biofilms. Kluwer, Dordrecht, pp. 363–369.Google Scholar
  74. Viles, H.A. (1984) Biokarst. Review and prospect. Prog. Phys. Geogr. 8: 532–542.CrossRefGoogle Scholar
  75. Vlasceanu, L., Sarbu, S.M., Engel, A.S. and Kinkle, B.K. (2000) Acidic cave-wall biofilms located in the Frasassi Gorge, Italy. Geomicrobiol. J. 17: 125–139.CrossRefGoogle Scholar
  76. Went, F.W. (1969) Fungi associated with stalactite growth. Science 166: 385–386.PubMedCrossRefGoogle Scholar
  77. Wood, D.A., Dalrymple, R.W., Narbonne, G.M., Gehling, J.G. and Clapham, M.E. (2003) Paleoenvironmental analysis of the late Neoproterozoic Mistaken Point and Trepassey formations, southeastern Newfoundland. Can. J. Earth Sci. 40: 1375–1391.CrossRefGoogle Scholar
  78. Yuan, X., Xiao, S. and Taylor, T.N. (2005) Lichen-like symbiosis 600 million years ago. Science 308: 1017–1020.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Martin D. Brasier
    • 1
  • Richard H. T. Callow
    • 1
  • Latha R. Menon
    • 1
  • Alexander G. Liu
    • 1
  1. 1.Department of Earth SciencesUniversity of OxfordOxfordUK

Personalised recommendations