Advertisement

Microbial Mats pp 515-539 | Cite as

Diversity and Ecology of Cyanobacterial Microflora of Antarctic Seepage Habitats: Comparison of King George Island, Shetland Islands, and James Ross Island, NW Weddell Sea, Antarctica

  • Ondřej KomárekEmail author
  • Jiří Komárek
Chapter
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 14)

Abstract

Antarctic seepages are a unique biotope with special communities of algae and cyanobacteria, characterized by their unique species composition and life strategies. The seepages are supplied by melting water from permafrost, glaciers, and snow fields. Filamentous cyanobacteria are the first colonizers; they fill the space of the shallow water body and form algal mats on the surface of flooded soils. Algal communities in Antarctic seepages are characterized by special zonation and seasonality. They are important components of the Antarctic coastal ecosystems, and they are highly sensitive to climatic changes and fluctuations during the polar summer season. The study of the taxonomy and ecology of the individual populations is highly important for the protection of this biotope. This review compares the characteristic mat communities from two disparate Antarctic coastal ecosystems: maritime Antarctica – King George Island and NW Weddell Sea – James Ross Island.

Keywords

Summer Season Antarctic Peninsula South Shetland Island Cyanobacterial Community Subantarctic Island 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Our studies in Antarctica were supported by the grant Nos. 206/05/0253, 206/07/1789, and IAA600050704 (Grant Agency of the Czech Republic – GA CR). The authors thank for the technical help from the directory and members of the Polish Antarctic Station “Henryk Arctowski” and the Czech Antarctic Station “J.G. Mendel.” The climatological data were provided by Dr. Kamil Láska and Professor Dr. Pavel Prošek, Dept. of Geography, Faculty of Natural Sciences, Masaryk University, Brno, geological characteristics by Dr. Daniel Nývlt, Czech Geological Service, Prague, Czech Republic. Cited diatoms were identified by Dr. Václav Houk, Institute of Botany AS CR, Třeboň, Czech Republic. Figures 46 are published with the kind permission from Backhuys Publishers, Leiden, and Figs. 913 are published with the permission from Springer Science+Business Media.

References

  1. Beljakova, R.N. (1987) Cyanophyta zonae litoralis insulae King-George (Antarctis). Novit. Syst. Plant. Non Vasc. 24: 26–30.Google Scholar
  2. Broady, P.A. (1986) Ecology and taxonomy of the terrestrial algae of the Vestfold Hills. In: J. Pickard (ed.) Antarctic Oasis. Academic, Australia, pp. 165–202.Google Scholar
  3. Broady, P.A. (1989a) Broadscale patterns in the distribution of aquatic and terrestrial vegetation at three ice-free regions on Ross Island, Antarctica. Hydrobiologia 172: 77–95.CrossRefGoogle Scholar
  4. Broady, P.A. (1989b) Survey of algae and other terrestrial biota at Edward VII Peninsula, Marie Byrd Land. Antarct. Sci. 1: 215–224.Google Scholar
  5. Broady, P.A. (1996) Diversity, distribution and dispersal of Antarctic terrestrial algae. Biodivers. Conserv. 5: 1307–1335.CrossRefGoogle Scholar
  6. Broady, P.A. (2005) The distribution of terrestrial and hydro-terrestrial algal associations at the three contrasting locations in southern Victoria land, Antarctica. Arch. Hydrobiol./Algolog. Stud. 118: 95–112.Google Scholar
  7. Broady, P.A. and Kibblewhite A.L. (1991) Morphological characterisation of oscillatoriales (cyanobacteria) from Ross Island and southern Victoria Land, Antarctica. Antarct. Sci. 3: 35–45.CrossRefGoogle Scholar
  8. Broady, P.A. and Ohtani, S. (1990) Joint New Zealand – Japanese studies on the taxonomy of terrestrial Antarctic algae. N Z Antarct. Rec. 10: 22–27.Google Scholar
  9. Carlson, G.W.F. (1913) Süsswasseralgen aus der Antarktis, Südgeorgien, und den Falkland Inseln. Wiss. Ergebn. Schwed. Südpolar-Exped. 1901–1903, 4: 1–94.Google Scholar
  10. Casamatta, D.A., Johansen, J.R., Vis, M.L. and Broadwater, S.T. (2005) Molecular and morphological characterization of ten polar and near-polar strains within the oscillatoriales (cyanobacteria). J. Phycol. 41: 421–438.CrossRefGoogle Scholar
  11. Cavacini, P. (2001) Soil algae from northern Victoria Land (Antarctica). Polar Biosci. 14: 45–60.Google Scholar
  12. Comte, K., Šabacká, M., Carre-Mlouka, A., Elster, J. and Komárek, J. (2007) Relationships between the Arctic and the Antarctic cyanobacteria; three Phormidium-like strains evaluated by a polyphasic approach. FEMS Microbiol. Ecol. 59: 366–376.PubMedCrossRefGoogle Scholar
  13. Rios, A., Ascaso, C., Wierzchoz, J., Fernandez-Valiente, E. and Quesada, A. (2004) Microstructural characterization of cyanobacterial mats from the McMurdo Ice Shelf, Antarctica. Appl. Environ. Microbiol. 70: 569–580.PubMedCrossRefGoogle Scholar
  14. Elster, J. (2002) Ecological classification of terrestrial algal communities of polar environment, In: Beyer, L. and Boelter, M. (eds.) Ecological Studies. Springer, Berlin, pp. 303–319.Google Scholar
  15. Elster, J. and Benson, E. (2004) Life in the polar terrestrial environment with a focus on algae and cyanobacteria, In: B.J. Fuller, N. Lane and E.E. Benson (eds.) Life in Frozen State. CRC Press, Boca Raton, FL, pp. 111–150.Google Scholar
  16. Elster, J. and Komárek, O. (2003) Ecology of periphyton in a meltwater stream ecosystem in the maritime Antarctic. Antarct. Sci. UK 15: 189–201.CrossRefGoogle Scholar
  17. Fritsch, F.E. (1912) Freshwater algae. National Antarctic Discovery Expedition, 1901–1904. Br. Mus. Nat. Hist. 6: 1–66.Google Scholar
  18. Fritsch, F.E. (1917) Freshwater algae. British Antarctic (Terra Nova) Expedition. Nat. Hist. Rep. Part I. London.Google Scholar
  19. Gordon, D.A., Priscu, J.C. and Giovannoni, S. (2000) Origin and phylogeny of microbes living in permanent Antarctic lake ice. Microb. Ecol. 39: 197–202.PubMedGoogle Scholar
  20. Hagemann, M. (2002) Environmental stress, signalling and basic acclimation reactions, In: R. Solheim, S. Ventura and A. Wilmotte (eds.) Cyanobacteria and Nitrogen Fixation in Extreme Environments. European Science Foundation CYANOFIX, Longyearbyen, Svalbard, p. 24.Google Scholar
  21. Huckauf, J., Nomura, C., Forchhammer, K. and Hagemann, M. (2000) Stress responses of Synechocystis sp. Strain PCC 6803 mutants impaired in genes encoding putative alternative sigma factors. Microbiology 146: 2877–2889.PubMedGoogle Scholar
  22. Jungblut, A.-D., Hawes, I., Mountfort, D., Hitzfeld, B., Dietrich, D.R., Burns, B.P. and Neilan, B.A. (2005) Diversity within cyanobacterial mat communities in variable salinity meltwater ponds of McMurdo Ice Shelf, Antarctica. Environ. Microbiol. 7: 519–529.PubMedCrossRefGoogle Scholar
  23. Kawecka, B. and Olech, M. (1993) Diatom communities in the Vanishing and Ornithologist Creek, King George Island, South Shetlands, Antarctica. Hydrobiologia 260/270: 327–333.CrossRefGoogle Scholar
  24. Komárek, J. (1999) Diversity of cyanoprokaryotes (cyanobacteria) of King George Island, maritime Antarctica – a survey. Arch. Hydrobiol./Algolog. Studies 94: 181–193.Google Scholar
  25. Komárek, J. (2007) Phenotype diversity of the cyanobacterial genus Leptolyngbya in maritime Antarctica. Polish Polar Res. 28: 211–231.Google Scholar
  26. Komárek, J. and Anagnostidis, K. (2005) Cyanoprokaryota 19 Teil/2nd Part: Oscillatoriales, In: B. Büdel, L. Krienitz, G. Gärtner and M. Schagerl (eds.) Süsswasserflora von Mitteleuropa 19/2. Elsevier/Spektrum, Heidelberg, 759 pp.Google Scholar
  27. Komárek, J. and Komárek, O. (2003) Diversity of cyanobacteria in Seepages of King George Island, Maritime Antarctica, In: A.H.L. Huiskes, W.W.C. Gieskes, J. Rozema, R.M.L. Schorno, S.M. van der Vies and W.J. Wolff (eds.) Antarctic Biology in a Global Context. Backhuys Publishers, Leiden, Proceedings VIIIth SCAR Internat. Symp. 2001, Amsterdam, pp. 244–250.Google Scholar
  28. Komárek, O. and Komárek, J. (1999) Diversity of freshwater and terrestrial habitats and their oxyphototroph microflora in the Arctowski Station region, South Shetlands Islands. Polish Polar Res. 20: 259–282.Google Scholar
  29. Komárek, J., Elster, J. and Komárek, O. (2008) Diversity of the cyanobacterial microflora of the northern part of James Ross Island, NW Weddell Sea, Antarctica. Polar Biol. 31: 853–865.CrossRefGoogle Scholar
  30. Luścinska, M. and Kyć, A. (1993) Algae inhabiting creeks of the region “H. Arctowski” Polish Antarctic Station, King George Is., South Shetlands. Polish Polar Res. 14: 393–405.Google Scholar
  31. Mataloni, G. and Pose, M. (2001) Non-marine algae from islands near Cierva Point, Antarctic Peninsula. Cryptog./Algolog. 22: 41–64.CrossRefGoogle Scholar
  32. Mataloni, G., Tell, G. and Wynn-Williams, D.D. (2000) Structure and diversity of soil algal communities from Cierva Point (Antarctic Peninsula). Polar Biol. 23: 205–211.CrossRefGoogle Scholar
  33. Myrcha, A., Ochyra, R. and Tatur, A. (1991) Site of Special Scientific Interest no. 8 – western shores of Admiralty Bay, King George Island, South Shetland Islands. – First Polish – Soviet Antarct. Symp. “ARCTOWSKI ’85”, PAS, II Div. Biol. Sci., pp. 157–168.Google Scholar
  34. Nadeau, T. and Castenholz, R.W. (2001) Evolutionary relationships of cultivated Antarctic oscillarians (cyanobacteria). J. Phycol. 37: 650–654.CrossRefGoogle Scholar
  35. Novis, P.M. and Smissen, R.D. (2006) Two generic and ecological groups of Nostoc commune in Victoria Land, Antarctica, revealed by AFLP analysis. Antarct. Sci. 18: 573–581.CrossRefGoogle Scholar
  36. Nývlt, D. and Mixa, P. (2003) [Paleogeographical development of the Antarctic Peninsula during the late Cainozoic.] Geografie – Sborn. ČGS 108: 245–260 (In Czech).Google Scholar
  37. Ohtani, S. (1986) Epiphytic algae on mosses in the vicinity of Syowa Station, Antarctica. Mem. Natl. Inst. Polar. Res., Special Issue 44: 209–219.Google Scholar
  38. Ohtani, S., Akiyama, M. and Kanda, H. (1991) Analysis of Antarctic soil algae by the direct observation using the contact slide method. Antarct. Rec. 35: 285–295.Google Scholar
  39. Olech, M. (1993) Lower plants, In: S. Rakusa-Suszczewski (ed.) The Maritime Antarctic Coastal Ecosystem of Admiralty Bay. Polish Academy of Sciences, Warsaw, pp. 173–179.Google Scholar
  40. Prescott, G.W. (1979) A contribution to a bibliography of Antarctic and subantarctic algae together with a checklist of freshwater taxa report to 1979. Bibliotheca Phycol. 45: 1–312.Google Scholar
  41. Priscu, J.C., Fritsen, C.H., Adams, E.E., Giovannoni, S.J., Paerl, H.W., McKay, C.P., Doran, P.T., Gordon, D.A., Lanoil, B.D. and Pinckney, J.L. (1998) Perennial Antarctic lake ice: an oasis for life in polar desert. Science 280: 2095–2098.PubMedCrossRefGoogle Scholar
  42. Rakusa-Suszczewski, S. (ed.) (1993) The Maritime Antarctic Coastal Ecosystem of Admiralty Bay. Department of Antarctic Biology, Polish Academy of Sciences, Warsaw, 216 pp.Google Scholar
  43. Taton, A., Grubisic, S., Brambilla, E., De Wit, R. and Wilmotte, A. (2003) Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. Appl. Environ. Microbiol. 69: 5157–5169.PubMedCrossRefGoogle Scholar
  44. Taton, A., Grubisic, S., Ertz, D., Hodgson, D.A., Piccardi, R., Biondi, N., Tredici, M.R., Mainini, M., Losi, D., Marinelli, F. and Wilmotte, A. (2006) On of Antarctic oscillatorian strains: molecular results vs microscopical results. J. Phycol. 42: 1257–1270.CrossRefGoogle Scholar
  45. Tatur, A. and Myrcha, A. (1993) Ornithogenic soils, In: S. Rakusa-Suszczewski (ed.) The Maritime Antarctic Coastal Ecosystem of Admiralty Bay. Department of Antarctic Biology, Polish Academy of Sciences, Warsaw, pp. 161–165.Google Scholar
  46. Ter Braak, C.J.F. and Prentice, I.C. (1988) A theory of gradient analysis. Adv. Ecol. Res. 18: 271–317.CrossRefGoogle Scholar
  47. Vincent, W.F., Downes, M.T., Castenholz, R.W. and Howard-Williams, C. (1993) Community ­structure and pigment organization of cyanobacteria-dominated microbial mats in Antarctica. J. Phycol 28: 213–221.CrossRefGoogle Scholar
  48. Vinocur, A. and Pizzaro, H. (1995) Periphyton flora of some lotic and lentic environments of Hope Bay (Antarctic Peninsula). Polar Biol. 15: 401–414.CrossRefGoogle Scholar
  49. West, W. and West, G.S. (1911) Freshwater algae, In: J. Murray (ed.) British Antarctic Expedition 1907–1909, Reports on the Scientific Investigations; Biology, part 7, Vol. 1, pp. 263–298.Google Scholar
  50. Wharton, R.A., Parker, B.C. and Simmons, G.M., Jr. (1983) Distribution, species composition and morphology of algal mats in Antarctic dry valley lakes. Phycologia 22: 355–365.CrossRefGoogle Scholar
  51. Wynn-Williams, D.D. (1991) Aerobiology and colonization in Antarctica, In: M. Hjelmroos, S. Nilsson and G. El-Ghazaly (eds.) Proceedings of 4th International Conference of Aerobiology. Stockholm, 1990, 30, pp. 380–393.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Institute of Systems Biology and Ecology ASCR and Institute of Physical BiologyUniversity of South BohemiaNové HradyCzech Republic
  2. 2.Botanical Institute ASCR, Třeboň and Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic

Personalised recommendations