The Thermo-Acidophilic Cyanidiophyceae (Cyanidiales)



Extremophiles are organisms that thrive in environments previously thought inhospitable to life because the physicochemical characteristics fall outside the range tolerated by human cells. These types of environments are usually fatal to most eukaryotes, but have been shown to host a diverse group of prokaryotes that rely on specialized enzymes for survival. Extremophiles are permanently exposed to harsh environmental conditions and are categorized according to their ability to thrive in a specific type of niche. For example, thermophiles grow at temperatures above 50°C, psycrophiles prefer temperatures below 15°C, piezophiles are pressure-lovers, halophiles are found in high salt concentrations, whereas acidophiles and alkaliphiles thrive at an extreme pH of ≤ 3 and ≥ 10, respectively. These taxa are found in hot and cold deserts, hot springs, salt lakes, in sulfide mines, or near deep-sea vents all around the world. It has been speculated that if extraterrestrial life exists, it would be in the form of an extremophile.


  1. Aguilera, A., Souza-Egipsy, V., Gómez, F. and Amils, R. (2007) Development and structure of eukaryotic biofilms in an extreme acidic environment, Río Tinto (SW, Spain). Microb. Ecol. 53: 294–305.PubMedCrossRefGoogle Scholar
  2. Albertano, P. and Pinto, G. (1986) The action of heavy metals on the growth of the acidophilic algae. Boll. Soc. Natur. Napoli 45: 319–328.Google Scholar
  3. Albertano, P., Ciniglia, C., Pinto, G. and Pollio, A. (2000) The taxonomic position of Cyanidium, Cyanidioschyzon and Galdieria: an update. Hydrobiologia 433: 137–143.CrossRefGoogle Scholar
  4. Baker, B.J., Lutz, M.A., Dawson, S.C., Bond, P.L. and Banfield, J.F. (2004) Metabolically active eukaryotic communities in extremely acidic mine drainage. Appl. Environ. Microbiol. 70: 6264–6271.PubMedCrossRefGoogle Scholar
  5. Barbier, G., Oesterhelt, C., Larson, M.D., Halgren, R.G., Wilkerson, C., Garavito, R.M., Benning, C. and Weber, A.P. (2005) Comparative genomics of two closely related unicellular thermo-acidophilic red algae, Galdieria sulphuraria and Cyanidioschyzon merolae, reveals the molecular basis of the metabolic flexibility of Galdieria sulphuraria and significant differences in carbohydrate metabolism of both algae. Plant Physiol. 137: 460–474.PubMedCrossRefGoogle Scholar
  6. Barbier, G.G., Zimmermann, M. and Weber, A.P.M. (2005) Genomics of the thermo-acidophilic red alga Galdieria Sulphuraria, In: R.B. Hoover, G.V. Levin, A.Y. Rozanov and G.R. Gladstone (eds.) Astrobiology and Planetary Missions. SPIE, San Diego, CA, pp. 67–78.Google Scholar
  7. Bhattacharya, D. and Medlin, L. (1995) The phylogeny of plastids: a review based on comparisons of small subunit ribosomal RNA coding regions. J. Phycol. 31: 489–498.CrossRefGoogle Scholar
  8. Bonheyo, G.T., Frias-Lopez, J. and Fouke, B.W. (2005) A test for airborne dispersal of thermophilic bacteria from hot springs, In: W.P. Inskeep and T.R. McDermot (eds.) Geothermal Biology and Geochemistry in Yellowstone National Park. Proceedings of the Thermal Biology Institute Workshop, Yellowstone National Park, WY. Montana State University Publications, Bozeman, MT, pp. 327–340.Google Scholar
  9. Broadwater, S. and Scott, J. (1994) Ultrastructure of unicellular red algae, In: J. Seckbach (ed.) Evolutionary Pathways and Enigmatic Algae: Cyanidium caldarium (Rhodophyta) and Related Cells. Kluwer, Dordrecht, The Netherlands, pp. 215–230.CrossRefGoogle Scholar
  10. Brock, T.D. (1967) Life at high temperatures. Science 158: 1012–1018.PubMedCrossRefGoogle Scholar
  11. Brock, T.D. (1978) The genus Cyanidium, In: T.D. Brock (ed.) Thermophilic Microorganisms and Life at High Temperature. Springer, New York, pp. 255–302.CrossRefGoogle Scholar
  12. Brock, T.D. (1994) Life at High Temperatures. Yellowstone Association for Natural Science, History & Education, Yellowstone National Park, WY.Google Scholar
  13. Castenholz, R.W. (1969) The thermophilic cyanophytes of Iceland and the upper temperature limit. J. Phycol. 5: 360–368.CrossRefGoogle Scholar
  14. Ciniglia, C., Yoon, H.S., Pollio, A., Pinto, G. and Bhattacharya, D. (2004) Hidden biodiversity of the extremophilic Cyanidiales red algae. Mol. Ecol. 13: 1827–1838.PubMedCrossRefGoogle Scholar
  15. Cozzolino, S., Caputo, P., De Castro, O., Moretti, A. and Pinto, G. (2000) Molecular variation in Galdieria sulphuraria (Galdieri) Merola and its bearing on taxonomy. Hydrobiologia 433: 145–151.CrossRefGoogle Scholar
  16. De Luca, P. and Moretti, A. (1983) Fluoridosides in Cyanidium caldarium, Cyanidioschyzon merolae and Galdieria sulphuraria (Rhodophyta, Cyanidiophyceae). J. Phycol. 19: 368–369.CrossRefGoogle Scholar
  17. De Luca, P. and Taddei, R. (1970) Due alghe delle fumarole acide dei Campi Flegrei (Napoli): Cyanidium caldarium? Delpinoa 1011: 79–89.Google Scholar
  18. De Luca, P., Taddei, R. and Varano, L. (1978) ‘Cyanidioschyzon merolae’: a new alga of thermal acidic environments. Webbia 33: 37–44.Google Scholar
  19. Doemel, W.N. and Brock, T.D. (1970) The upper temperature limit of Cyanidium caldarium. Arch. Mikrobiol. 72: 326–332.PubMedGoogle Scholar
  20. Doemel, W.N. and Brock, T.D. (1971) The physiological ecology of Cyanidium caldarium. J. Gen. Microbiol. 67: 17–32.Google Scholar
  21. Fouke, B.W., Bonheyo, G.T., Sanzenbacher, B. and Frias-Lopez, J. (2003) Partitioning of bacterial communities between travertine depositional facies at mammoth hot springs, Yellowstone National Park, USA. Can. J. Earth Sci. 40: 1531–1548.CrossRefGoogle Scholar
  22. Friedmann, I. (1964) Progress in the biological exploration of caves and subterranean waters in Israel. Int. J. Speleol. 1: 29–33.CrossRefGoogle Scholar
  23. Geitler, L. (1933) Diagnoses neuer Blaualgen von den Sunda-Insela. Arch. Hydrobiol. Suppl. 12: 622–634.Google Scholar
  24. Geitler, L. and Ruttner, F. (1936) Die Cyanophyceen der Deutschen limnologische Sunda-Expedition, ihre Morphologie, Systematik und Ökologie. C. Ökologischer Teil. Arch. Hydrobiol. (Stuttgart) Suppl. Bd XIV (Tropische Binnengenwässer VI): 553–715.Google Scholar
  25. Gross, W. (1999) Revision of comparative traits for the acido- and thermophilic red algae Cyanidium and Galdieria, In: J. Seckbach (ed.) Enigmatic Microorganisms and Life in Extreme Environments. Kluwer, Dordrecht, The Netherlands, pp. 439–446.Google Scholar
  26. Gross, W. (2000) Ecophysiology of algae living in highly acidic environments. Hydrobiologia 433: 31–37.CrossRefGoogle Scholar
  27. Gross, W. and Gross, S. (2001) Physiological characterization of the red alga Galdieria sulphuraria isolated from a mining area. Nova Hedwigia Beih. 123: 523–530.Google Scholar
  28. Gross, W. and Oesterhelt, C. (1999) Ecophysiological studies on the red alga Galdieria sulphuraria isolated from southwest Iceland. Plant Biol. 1: 694–700.CrossRefGoogle Scholar
  29. Gross, W. and Schnarrenberger, C. (1995) Heterotrophic growth of 2 strains of the acido-thermophilic red alga Galdieria sulphuraria. Plant. Cell. Physiol. 36: 633–638.Google Scholar
  30. Gross, W., Küver, J., Tischendorf, G., Bouchaala, N. and Büsch, W. (1998) Cryptoendolithic growth of the red alga Galdieria sulphuraria in volcanic areas. Eur. J. Phycol. 33: 25–31.CrossRefGoogle Scholar
  31. Gross, W., Heilmann, I., Lenze, D. and Schnarrenberger, K. (2001) Biogeography of the Cyanidiaceae (Rhodophyta) based on 18S ribosomal RNA sequence data. Eur. J. Phycol. 36: 275–280.CrossRefGoogle Scholar
  32. Gross, W., Oesterhelt, C., Tischendorf, G. and Lederer, F. (2002) Characterization of a non-thermophilic strain of the red algal genus Galdieria isolated from Soos (Czech Republic). Eur. J. Phycol. 37: 477–482.CrossRefGoogle Scholar
  33. Hirose, H. (1950) Studies of thermal alga, Cyandium caldarium. Bot. Mag. Tokyo 63: 745–746.Google Scholar
  34. Hoffman, L. (1994) Cyanidium-like algae from caves, In: J. Seckbach (ed.) Evolutionary Pathways and Enigmatic Algae: Cyanidium caldarium (Rhodophyta) and Related Cells. Kluwer, Dordrecht, The Netherlands, pp. 175–182.CrossRefGoogle Scholar
  35. Johnson, D.B. (1998) Biodiversity and ecology of acidophilic microorganisms. FEMS Microbiol. Ecol. 27: 307–317.CrossRefGoogle Scholar
  36. Karsten, U., Barrow, K.D. and King, R.J. (1993) Floridoside, L-isofloridoside and D-isofloridoside in the red alga Porphyra columbina: seasonal and osmotic effects. Plant Physiol. 103: 485–491.PubMedGoogle Scholar
  37. Karsten, U., West, J.A., Zuccarello, G.C., Nixdorf, O., Barrow, K.D. and King, R.J. (1999) Low molecular weight carbohydrate patterns in the Bangiophyceae (Rhodophyta). J. Phycol. 35: 967–976.CrossRefGoogle Scholar
  38. Kauss, H. (1968) Galaktosylglyzeride und Osmoregulation in Rotalgen. Zeitschrift fiir Pflanzenphysiologie 58: 428–433.Google Scholar
  39. Kerjean, V., Morel, B., Stiger, V., Bessières, M.-A., Simon-Colin, C., Magné, C. and Deslandes, E. (2007) Optimization of floridoside production in the red alga Mastocarpus stellatus: pre-conditioning, extraction and seasonal variations. Bot. Mar. 50: 59–64.CrossRefGoogle Scholar
  40. Kirst, G.O. (1980) Low mw carbohydrates and ions in Rhodophyceae: quantitative measurement of floridoside and digeneaside. Phytochemistry 19: 1107–1110.CrossRefGoogle Scholar
  41. Kuroiwa, T., Nishida, K., Yoshida, Y., Fujiwara, T., Mori, T., Kuroiwa, H. and Misumi, O. (2006) Structure, function and evolution of the mitochondrial division apparatus. Biochim. Biophys. Acta 1763: 510–521.PubMedCrossRefGoogle Scholar
  42. Leclerc, J.C., Coute, A. and Dupuy, P. (1983) Le climat annuel de deux grottes et d’une église du Poitou, ou vivent des colonies pures d’algues sciaphiles. Cryptogamie. Algol. 4: 1–19.Google Scholar
  43. Li, Z.C., McClure, W. and Hagerman, A.E. (1989) Soluble and bound apoplastic activity for peroxidase, beta-D-glucosidase, malate dehydrogenase and nonspecific arylesterase in barley (Hordeum vulgare L.) and oat (Avena sativa L.) primary leaves. Plant Physiol. 90: 185–190.PubMedCrossRefGoogle Scholar
  44. Li, S.-Y., Lellouche, J.-P., Shabtai, Y. and Arad, S. (2001) Fixed carbon partitioning in the red microalga Porphyridium sp. (Rhodophyta). J. Phycol. 37: 289–297.CrossRefGoogle Scholar
  45. Li, S.-Y., Shabtai, Y. and Arad, S. (2002) Floridoside as a carbon precursor for the synthesis of cell-wall polysaccharide in the red microalga Porphiridium sp. (Rhodophyta). J. Phycol. 38: 931–938CrossRefGoogle Scholar
  46. Matsuzaki, M., Misumi, O., Shin-i, T., Maruyama, S., Takahara, M., Miyagishima, S.-Y., Mori, T., Nishida, K., Yagisawa, F., Nishida, K., Yoshida, Y., Nishimura, Y., Nakao, S., Kobayashi, T., Momoyama, Y., Higashiyama, T., Minoda, A., Sano, M., Nomoto, H., Oishi, K., Hayashi, H., Ohta, F., Nishizaka, S., Haga, S., Miura, S., Morishita, T., Kabeya, Y., Terasawa, K., Suzuki, Y., Ishii, Y., Asakawa, S., Takano, H., Ohta, N., Kuroiwa, H., Tanaka, K., Shimizu, N., Sugano, S., Sato, N., Nozaki, H., Ogasawara, N., Kohara, Y. and Kuroiwa, T. (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428: 653–657.PubMedCrossRefGoogle Scholar
  47. Meneghini, G. (1839) Nuova specie di alga descritta dal Sig. Dott. Giuseppe Meneghini di Padova. Nuovo Giorn. Lett. 39: 67–68.Google Scholar
  48. Merola, A., Castaldo, R., De Luca, P., Gambardella, R., Musacchio, A. and Taddei, R. (1981) Revision of Cyanidium caldarium: three species of acidophilic algae. Giorn. Bot. Ital. 115: 189–195.CrossRefGoogle Scholar
  49. Moreira, D., López-Archilla, A., Amils, R. and Marín, I. (1994) Characterization of two new thermoacidophilic microalgae: genome organization and comparison with Galdieria sulphuraria. FEMS Lett. 122: 109–114.CrossRefGoogle Scholar
  50. Muravenko, O.V., Selyakh, I.O., Kononenko, N.V. and Stadnichuk, I.N. (2001) Chromosome numbers and nuclear DNA contents in the red microalgae Cyanidium caldarium and three Galdeiria species. Eur. J. Phycol. 36: 227–232.CrossRefGoogle Scholar
  51. Nagasaka, S., Nishizawa, N.K., Mori, S. and Yoshimura, E.Y. (2004) Metal metabolism in the red alga Cyanidium caldarium and its relationship to metal tolerance. Biometals 17: 177–181.PubMedCrossRefGoogle Scholar
  52. Nagashima, H. (1976) Distribution of low molecular weight carbohydrates in marine red algae. Bull. Jap. Soc. Phycol. 24: 103–110.Google Scholar
  53. Nagashima, H. and Fukuda, I. (1983) Floridosides in unicellular hot-spring algae. Phytochemistry 22: 1949–1951.CrossRefGoogle Scholar
  54. Negoro, K. (1944) Untersuchungen über die Vegetation der mineralogen–azidotrophen Gewässer Japans. Sci. Rep. Tokyo Bunrika Daigaku Sect. B6: 231–374.Google Scholar
  55. Novis, P.M. and Harding, J.S. (2007) Freshwater algae associated with acid mine drainage, In: J. Seckbach (ed.) Algae and Cyanobacteria in Extreme Environments. Springer, Dordrecht, The Netherlands, pp. 443–463.CrossRefGoogle Scholar
  56. Nozaki, H., Takano, H., Misumi, O., Terasawa, K., Matsuzaki, M., Maruyama, S., Nishida, K., Yagisawa, F., Yoshida, Y., Fujiwara, T., Takio, S., Tamura, K., Chung, S.J., Nakamura, S., Kuroiwa, H., Tanaka, K., Sato, N. and Kuroiwa, T. (2007) A 100%-complete sequence reveals unusually simple genomic features in the hot-spring red alga Cyanidioschyzon merolae. BMC Biol. 5: 28.PubMedCrossRefGoogle Scholar
  57. Oesterhelt, C. and Gross, W. (2002) Different sugar kinases are involved in the sugar sensing of Galdieria sulphuraria. Plant Physiol. 128: 291–299.PubMedCrossRefGoogle Scholar
  58. Oesterhelt, C., Schnarrenberger, C. and Gross, W. (1999) Characterization of a sugar/polyol uptake system in the red alga Galdieria sulphuraria. Eur. J. Phycol. 34: 271–277.Google Scholar
  59. Oesterhelt, C., Vogelbein, S., Shrestha, R.P., Stanke, M. and Weber, A.P.M. (2007) The genome of the thermoacidophilic red microalga Galdieria sulphuraria encodes a small family of secreted class III peroxidases that might be involved in cell wall modification. Planta 227: 353–362.PubMedCrossRefGoogle Scholar
  60. Ott, F.D. and Seckbach, J. (1994) A review on the taxonomic position of the algal genus Cyanidium Geitler 1933 and its ecological cohorts Galdieria Merola in Merola et al. 1981 and Cyanidioschyzon De Luca et al. 1978. In: J. Seckbach (ed.) Evolutionary Pathways and Enigmatic Algae: Cyanidium caldarium (Rhodophyta) and Related Cells. Kluwer, The Netherlands, pp. 113–132.CrossRefGoogle Scholar
  61. Pinto, G. and Taddei, R. (1978) Le alghe delle acque e dei suoli acidi italiani. Delpinoa 1819: 77–106.Google Scholar
  62. Pinto, G., Albertano, P. and Pollio, A. (1994) Italy’s contribution to the systematics of Cyanidium caldarium ‘sensu lato’, In: J. Seckbach (ed.) Evolutionary Pathways and Enigmatic Algae: Cyanidium caldarium (Rhodophyta) and Related Cells. Kluwer, Dordrecht, pp. 157–166.CrossRefGoogle Scholar
  63. Pinto, G., Ciniglia, C., Cascone, C. and Pollio, A. (2007) Species composition of Cyanidiales Assemblages in Pisciarelli (Campi Flegrei, Italy) and description of Galdieria Phlegrea sp. nov., In: J. Seckbach (ed.) Algae and Cyanobacteria in Extreme Environments. Springer, Dordrecht, pp. 487–502.CrossRefGoogle Scholar
  64. Reed, R.H. (1983) Taxonomic implications of osmoacclimation in Cyanidium caldarium (Tilden) Geitler. Phycologia 22: 351–354.CrossRefGoogle Scholar
  65. Reed, R.H. (1985) Osmoacclimation in Bangia atropurpurea (Rhodophyta, Bangiales): the osmotic role of floridoside. Brit. Phycol. J. 20: 211–218.CrossRefGoogle Scholar
  66. Reed, R.H., Collins, J.C. and Russell, G. (1980) The effects of salinity upon galactosyl-glycerol content and concentration of the marine red alga Porphyra purpurea (Roth) C.Ag. J. Exp. Bot. 31: 1539–1554.CrossRefGoogle Scholar
  67. Reyes-Prieto, A. and Bhattacharya, D. (2007) Phylogeny of nuclear encoded plastid targeted proteins supports an early divergence of glaucophytes within Plantae. Mol. Biol. Evol. 24: 2358–2361.PubMedCrossRefGoogle Scholar
  68. Rigano, C., Fuggi, A., di Martino Rigano, V. and Aliotta, G. (1976) Studies on utilization of 2-ketoglutarate, glutamate and other amino acids by the unicellular alga Cyanidium caldarium. Arch. Microbiol. 107: 133–138.PubMedCrossRefGoogle Scholar
  69. Rigano, C., Aliotta, G., Martino Rigano, V.D., Fuggi, A. and Vona, V. (1977) Heterotrophic growth patterns in the unicellular alga Cyanidium caldarium. A possible role for threonine dehydrase. Arch. Microbiol. 113: 191–196.PubMedCrossRefGoogle Scholar
  70. Schwabe, G.H. (1936) Über einige Blaualgen aus dem mittleren und südlichen Chile. Verh. des Deutsch. Wiss. Ver. Santiago de Chile 3: 113–174.Google Scholar
  71. Seckbach, J. (1987) Evolution of eukaryotic cells via bridge algae: the Cyanidia connection, In: J.J. Lee and J.F. Frederick (eds.) Endocytobiology III. Ann. N. Y. Acad. Sci. 503: 424–437.Google Scholar
  72. Seckbach, J. (1991) Systematic problems with Cyanidium caldarium and Galdieria sulphuraria and their implications for molecular biology studies. J. Phycol. 27: 794–796.CrossRefGoogle Scholar
  73. Seckbach, J. (1994) The natural history of Cyanidium (Geitler 1933): past and present perspectives, In: J. Seckbach (ed.) Evolutionary Pathways and Enigmatic Algae: Cyanidium caldarium (Rhodophyta) and Related Cells. Kluwer, Dordrecht, The Netherlands, pp. 99–112.CrossRefGoogle Scholar
  74. Seckbach, J. (1999) The Cyanidiophyceae: hot spring acidophilic algae, In: J. Seckbach (ed.) Enigmatic Microorganisms and Life in Extreme Environments. Kluwer, Dordrecht, The Netherlands, pp. 425–435.CrossRefGoogle Scholar
  75. Sentsova, O.Y. (1991) Diversity of acido-theromphilic unicellular algae of the genus Galdieria (Rhodophyta, Cyanidiophyceae). Botanichesky J. St Petersburg 76: 69–79.Google Scholar
  76. Sentsova, O. Ju. (1994) The Study of Cyanidiophyceae in Russia, In: J. Seckbach (ed.) Evolutionary Pathways and Enigmatic Algae: Cyanidium caldarium (Rhodophyta) and Related Cells. Kluwer, Dordrecht, The Netherlands, pp. 167–174.CrossRefGoogle Scholar
  77. Skuja, H. (1970) Alghe cavernicole nelle zone illuminate delle Grotte di Castellana (Murge di Bari). Le Grotte d’Italia 4: 193–202.Google Scholar
  78. Smith, D.W. and Brock, T.D. (1973) Water status and the distribution of Cyanidium caldarium in soil. J. Phycol. 9: 330–332.Google Scholar
  79. Ueda, K. (1994) Ultrastructure of cytoplasmic organelles in Cyanidium Caldarium, In: J. Seckbach (ed.) Evolutionary Pathways and Enigmatic Algae: Cyanidium Caldarium (Rhodophyta) and Related Cells. Kluwer, Dordrecht, The Netherlands, pp. 231–238.CrossRefGoogle Scholar
  80. Weber, A.P., Oesterhelt, C., Gross, W., Brautigam, A., Imboden, L.A., Krassovskaya, I., Linka, N., Truchina, J., Schneidereit, J., Voll, H., Voll, L.M., Zimmermann, M., Jamai, A., Riekhof, W.R., Yu, B., Garavito, R.M. and Benning, C. (2004) EST-analysis of the thermo-acidophilic red microalga Galdieria sulphuraria reveals potential for lipid A biosynthesis and unveils the pathway of carbon export from rhodoplasts. Plant Mol. Biol. 55: 17–32.PubMedCrossRefGoogle Scholar
  81. Weber, A.P.M., Barbier, G.G., Shrestha, R.P., Horst, R.J., Minoda, A. and Oesterhelt, C. (2007) A genomics approach to understanding the biology of thermo-acidophilic red algae, In: J. Seckbach (ed.) Algae and Cyanobacteria in Extreme Environments. Springer, Dordrecht, The Netherlands, pp. 503–518.CrossRefGoogle Scholar
  82. White, D.E., Hutchinsn, R.A. and Keith, T.E.C. (1988) The geology and remarkable thermal activity of Norris Geyser Basin, Yellowstone National Park, Wyoming. US Geological Survey Professional Paper Report P1456, 84 pp.Google Scholar
  83. Yoon, H.S., Hackett, J.D., Pinto, G. and Bhattacharya, D. (2002) The single, ancient origin of chromist plastids. Proc. Natl. Acad. Sci. USA 99: 15507–15512.PubMedCrossRefGoogle Scholar
  84. Yoon, H.S., Hackett, J.D., Ciniglia, C., Pinto, G. and Bhattacharya, D. (2004) A molecular timeline for the origin of photosynthetic eukaryotes. Mol. Biol. Evol. 21: 809–818.PubMedCrossRefGoogle Scholar
  85. Yoon, H.S., Ciniglia, C., Wu, M., Comeron, J.M., Pinto, G., Pollio, A. and Bhattacharya, D. (2006a) Establishment of endolithic populations of extremophilic Cyanidiales (Rhodophyta). BMC Evol. Biol. 6: 78.PubMedCrossRefGoogle Scholar
  86. Yoon, H.S., Müller, K.M., Sheath, R.G., Ott, F.D. and Bhattacharya, D. (2006b) Defining the major lineages of red algae (Rhodophyta). J. Phycol. 42: 482–492.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Biological Sciences and the Roy J. Carver Center for Comparative GenomicsUniversity of IowaIowa CityUSA
  2. 2.Department of Ecology, Evolution and Natural ResourcesRutgers UniversityNewarkUSA

Personalised recommendations