Polyhedral Oligomeric Silsesquioxanes in Plastics

Chapter
Part of the Advances in Silicon Science book series (ADSS, volume 3)

Abstract

Polyhedral oligomeric silsesquioxanes (POS or POSS®) were fi rst synthesized as long ago as the 1960s. Since that time, global interest has grown considerably as indicated by the many articles and patents in the fi eld [1,2,3,4,5]. The reason being that POS, with a unique three dimensional cage structure composed of silicon and oxygen (Fig. 5.1), is an unusual type of molecule with correspondingly unusual properties. The discovery of the cage form of carbon, called buckminsterfullerene (Fig. 5.1), was awarded the 1996 Nobel Prize for Chemistry, and other cage structure hydrocarbons such as adamantane and other diamondoids have attracted considerable interest. However, time has shown that POS is far more commercially important for several reasons. Firstly, POS is extremely versatile.

Keywords

Contact Angle Solubility Parameter High Contact Angle Polyhedral Oligomeric Silsesquioxanes Heat Distortion Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pielichowski K, Njuguna J, Janowski B, Pielichowski J (2006) Adv Polym Sci 201:225–296.CrossRefGoogle Scholar
  2. 2.
    Joshi M, Butola BS (2004) J Macromol Sci Part C Polym Rev 44(4):389–410.Google Scholar
  3. 3.
    Pan G (2007) In Mark JE (ed) Physical Properties of Polymers Handbook Part VI, Springer, New York, USA.Google Scholar
  4. 4.
    Phillips SH, Haddad TS, Tomczak SJ (2004) Curr Opin Solid StateMater Sci 8:21.CrossRefGoogle Scholar
  5. 5.
    DeArmitt C (2010) Polyhedral Oligomeric Silsequioxane (POSS(r)) Enhanced Plastics. In Xanthos M (ed), Functional Fillers for Plastics, 2nd Ed, Wiley-VCH, Ch 23.Google Scholar
  6. 6.
    DeArmitt C, POSS(r) User’s Guide, Hybrid Plastics, USA.Google Scholar
  7. 7.
    Hartmann-Thompson C, Keeley D, Dvornic PR, Keinath SE, McCrea K. (2007) J Appl Polym Sci 104(5):3171–3182.CrossRefGoogle Scholar
  8. 8.
    Hartmann-Thompson C, Keeley D, Pollock K, Keinath SE, Dvornic PR, Dantus M, Gunaratne T, Lecaptain D (2008) Chem Mater 20(8):2829–2838.CrossRefGoogle Scholar
  9. 9.
    Hartmann-Thompson C (2009) US Pat. 0263287 A1.Google Scholar
  10. 10.
    Nowak R, Hartmann-Thompson C, Bruza K, Thomas L, Meier D (2008) World Pat. WO 2008127645 A1.Google Scholar
  11. 11.
    Hartmann-Thompson C, Merrington A, Carver PI, Keeley DL, Rousseau JL, Hucul D, Bruza KJ, Thomas LS, Keinath SE, Nowak RM, Katona DM, Santurri PR (2008) J Appl Polym Sci 110(2):958–974.CrossRefGoogle Scholar
  12. 12.
    Decker B, Hartmann-Thompson C, Carver PI, Keinath SE, Santurri PR (2010) Chem Mater 22(3):942–948.CrossRefGoogle Scholar
  13. 13.
    Hao N, Böhning M, Wohlrab S, Schönhals A (2008) Macromol Symp 267:69–73.CrossRefGoogle Scholar
  14. 14.
    Kopesky ET, Haddad TS, McKinley GH, Cohere RE (2005) Polymer 46(13):4743–4752.Google Scholar
  15. 15.
    Feher FJ, Newman DA, Walzer JF (1989) J Am Chem Soc 111:1741–1748.CrossRefGoogle Scholar
  16. 16.
    Capaldi FM, Boyce MC, Rutledge GC (2006) J Chem Phys 124:214709.CrossRefGoogle Scholar
  17. 17.
    Viebke J (1996) PhD Thesis, Theoretical Aspects and Experimental Data on the Deterioration of Polyolefi n Hot-Water Pipes, KTH, Stockholm, Sweden.Google Scholar
  18. 18.
    Al-Malaika S, Golovoy A, Wilkie CA, Chemistry and Technology of Polymer Additives, Blackwell Science, Oxford, UK, 1999.Google Scholar
  19. 19.
    Al-Malaika S, Reactive Modifi ers for Polymers, Chapman and Hall, London, UK, 1997.Google Scholar
  20. 20.
    Bergenudd H, Eriksson P, DeArmitt C, Stenberg B, Malmström Jonsson E (2002) Polym Degrad Stability 76:503–509.CrossRefGoogle Scholar
  21. 21.
    DeArmitt C, Wheeler P, Hait S (2009) unpublished work, Hybrid Plastics, Hattiesburg, MS, USA.Google Scholar
  22. 22.
    DeArmitt C, Wheeler P (2008) Plastics Addit Compound 10(4):36–39.CrossRefGoogle Scholar
  23. 23.
    Iyer S, Schiraldi DA (2007) Macromolecules, 40(14):4942–4952.CrossRefGoogle Scholar
  24. 24.
    Soong SY, Cohen RE, Boyce MC, Chen W (2008) Polymer 49(6):1440–1443.CrossRefGoogle Scholar
  25. 25.
    Misra R, Fu BX, Morgan SE (2007) 65th Annual Technical Conference Society of Plastics Engineers, 62–66.Google Scholar
  26. 26.
    Misra R, Fu BX, Morgan SE (2007) J Polym Sci Part B Polym Phys 45:2441–2455.CrossRefGoogle Scholar
  27. 27.
    Haddad TS, Lichtenhan JD (1996) Macromolecules 29(22):7302–7304.CrossRefGoogle Scholar
  28. 28.
    Van Krevelen DW, te Nijenhuis K, Properties of Polymers, 4th Ed, Elsevier, Oxford, UK 2009.Google Scholar
  29. 29.
    Soong SY, Cohen RE, Boyce MC (2007) Polymer 48:1410–1418.CrossRefGoogle Scholar
  30. 30.
    Kamo H, Kuga S, Ono T, Ikeda M (2002) US Pat. 193533 A1.Google Scholar
  31. 31.
    Misra R, Fu BX, Plagge A, Morgan SE (2009) J Polym Sci Part B Polym Phys 47(11):1088–1102.CrossRefGoogle Scholar
  32. 32.
    Rios PF, Dodiuk H, Kenig S, McCarthy S, Dotan J (2007) J Adhesion Sci Technol 21(5–6):399–408.CrossRefGoogle Scholar
  33. 33.
    Mabry JM, Vij A, Iacono ST (2007) Polym Prepr 48(2):970.Google Scholar
  34. 34.
    Xu J, Li X, Cho CM, Toh CL, Shen L, Mya KY, Lu X, He C (2009) J Mater Chem 19(27):4740–4745.CrossRefGoogle Scholar
  35. 35.
    Iacono ST, Vij A, Grabow W, Smith DW, Mabry JM (2007) Chem Commun:4992–4994.Google Scholar
  36. 36.
    Adamson AA, Physical Chemistry of Surfaces, 5th Ed, John Wiley & Sons Inc., New York, USA, 1990.Google Scholar
  37. 37.
    Chan CM, Polymer Surface Modifi cation and Characterization, Carl Hanser Verlag, Munich, Germany 1993.Google Scholar
  38. 38.
    Escudé NC, Chen EYX (2009) Chem Mater 21(24):5743–5753.CrossRefGoogle Scholar
  39. 39.
    Flory PJ (1953) Principles of Polymer Chemistry, Cornell University Press, Ithaca, NY, USA.Google Scholar
  40. 40.
    Mya KY, He C, Huang J, Xiao Y, Dai J, Siow Y-P (2004) J Polym Sci Part A Polym Chem 43(14):3490–3503.CrossRefGoogle Scholar
  41. 41.
    Shaw D (1992) Introduction to Colloid and Surface Chemistry 4th Edition, Butterworth-Heinemann, Oxford, UK.Google Scholar
  42. 42.
    Karger-Kocsis J (1995) Polypropylene, Structure, blends and composites, Volume 3, Composites, Chapman and Hall, London, UK.Google Scholar
  43. 43.
    Improved Thermoplastic Composites by Optimized Surface Treatment of the Mineral Fillers, http://www.phantomplastics.com/attachments/File/Optimized_Dispersants_for_Fillers_and_Pigments_Report.pdf
  44. 44.
    Wheeler PA, Misra R, Cook RD, Morgan SE (2008) J Appl Polym Sci 108:2503–2508.CrossRefGoogle Scholar
  45. 45.
    Lichtenhan JD, Fu X, Blue M, Wheeler P, Misra R, Morgan S (2008) World Pat. 054418 A2.Google Scholar
  46. 46.
    DeArmitt C (2008) Cosmetics & Toiletries (Allured Publishing) 123(8):51–56.Google Scholar
  47. 47.
    Quadir M (2004) World Pat. 082611.Google Scholar
  48. 48.
    Poe GD, Farmer BS (2009) US Pat. 0069508 A1.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Phantom PlasticsHattiesburgUSA
  2. 2.Phantom PlasticsHattiesburgUSA

Personalised recommendations