Chemoselective and Enantioselective Hydrogenations on Immobilized Complexes

  • Agnes Zsigmond
  • Ferenc Notheisz
  • Petr Kluson
  • Tomas Floris
Chapter
Part of the Catalysis by Metal Complexes book series (CMCO, volume 33)

Abstract

Homogeneous catalysts, which are mixed with the reactants at the molecular level, typically show the highest activity and selectivity as they offer chemically well-defined active sites and are not limited by heat and mass transport. However, an inherent disadvantage of the homogeneous catalysis is the need to separate the catalyst from a product after the reaction. Therefore, solid or immobilized homogeneous catalysts are preferred in industry. In this contribution we pay attention to chemoselectivity, regioselectivity and enantioselectivity in the synthesis of fine chemicals by means of hydrogenation reactions with immobilised homogeneous complexes. Preferential hydrogenation of one functional group in a molecule over another is the chemoselective process, while regioselective hydrogenation is the preferential formation of one constitutional isomer of the product in a reaction in which other isomers may also be formed, and the stereoselective hydrogenation is the formation of an excess of one stereoisomer over others. Homogeneous and heterogeneous catalytic transfer hydrogenations (CTH) were additionally introduced as alternative methods to the classical hydrogenation processes. They utilise a different hydrogen source from molecular hydrogen and can find their use for reduction of any type of groups.

References

  1. 1.
    Gallezot P, Richard D (1998) Catal Rev-Sci Eng 40:81–126CrossRefGoogle Scholar
  2. 2.
    Fache E, Mercier C, Pagnier N et al (1993) J Mol Catal A Chem 79:117–131Google Scholar
  3. 3.
    James BR, Morris RH (1978) J Chem Soc. Chem Commun 21:929–930Google Scholar
  4. 4.
    Joó F, Kovács J, Bényei A et al (1998) Angew Chem Int Ed 37:969–970CrossRefGoogle Scholar
  5. 5.
    Zsigmond A, Balatoni I, Bogár K et al (2004) J Catal 227:428–435CrossRefGoogle Scholar
  6. 6.
    Augustine RL, Tanielyan SK, Mahata N et al (2003) Appl Catal. A 256:69–76Google Scholar
  7. 7.
    End N, Schoning KU (2004) Top. Curr Chem 242:241–271CrossRefGoogle Scholar
  8. 8.
    Augustine RL, Tanielyan SK, Anderson S et al (1999) Chem Commun 13:1257–1258CrossRefGoogle Scholar
  9. 9.
    Ghosh A, Kumar R (2005) Microporous Mesoporous Mater 87:33–44CrossRefGoogle Scholar
  10. 10.
    Sephard DS, Zhou W, Maschmeyer T et al (1998) Angew Chem Int Ed 37:2719–2723CrossRefGoogle Scholar
  11. 11.
    Thomas JM, Raja R (2004) J Organomet Chem 689:4110–4124CrossRefGoogle Scholar
  12. 12.
    Noyori R, Ohkuma T (2001) Angew Chem Int Ed 40:40–73CrossRefGoogle Scholar
  13. 13.
    Nunes RMD, Fernandes TF, Carvalho GA et al (2009) J Mol Catal A Chem 307:115–120CrossRefGoogle Scholar
  14. 14.
    Guoyu Y, Ailing S, Wenfeng Z, Hainin Z, Denggao J (2007) Catal Lett 118:275–279CrossRefGoogle Scholar
  15. 15.
    Ernst S, Disteldorf H, Yang X (1998) Microporous Mesoporous Mater 22:457–464CrossRefGoogle Scholar
  16. 16.
    Arstad E, Barrett AGM, Tedeschi L (2003) Tetrahedron Lett 44:2703–2707CrossRefGoogle Scholar
  17. 17.
    Buchmeiser MR (2000) Chem Rev 100:1565–1604CrossRefGoogle Scholar
  18. 18.
    Barrett AGM, Hopkins BT, Kobberling J (2002) Chem Rev 102:3301–332CrossRefGoogle Scholar
  19. 19.
    Barrett AGM, Hopkins BT, Kobberling J (2002) J Org Letters 4:1975–1977CrossRefGoogle Scholar
  20. 20.
    Horvath HH, Papp G, Csajagi C et al (2007) Catal Commun 8:442–446CrossRefGoogle Scholar
  21. 21.
    Horvath HH, Joo F (2005) React Kinet Catal Lett 85:355–360CrossRefGoogle Scholar
  22. 22.
    Zsigmond A, Undrala S (2007) Notheisz, Papp G, Joo F. Catal Lett 15:163–168CrossRefGoogle Scholar
  23. 23.
    Burke SD, Danheiser RL (1999) Handbook of reagents for organic synthesis. Wiley, New YorkGoogle Scholar
  24. 24.
    Ohkuma T, Ooka H, Hashiguchi S et al (1995) J Am Chem Soc 117:2675–2676CrossRefGoogle Scholar
  25. 25.
    Baratta W, Herdtweck E, Siega K et al (2005) Organometallics 24:1660–1669CrossRefGoogle Scholar
  26. 26.
    Choualeb A, Lough AJ, Gusev DG (2007) Organometallics 26:5224–5229CrossRefGoogle Scholar
  27. 27.
    Schrock RR, Osborn JA (1970) Chem Commun 9:567–568Google Scholar
  28. 28.
    Deshmukh AA, Kinage AK, Kumar R (2008) Catal Lett 120:257–260CrossRefGoogle Scholar
  29. 29.
    Steines S, Englert U, Driessen-Hoelscher B (2000) Chem Commun 3:217–218CrossRefGoogle Scholar
  30. 30.
    Leitmannova E, Cerveny L (2007) J Mol Catal A Chem 261:242–245CrossRefGoogle Scholar
  31. 31.
    Sahoo S, Kumar P, Lefebvre F et al (2007) J Mol Catal A Chem 273:102–108CrossRefGoogle Scholar
  32. 32.
    Bronowski J (1973) The ascent of man. British Broadcasting Corporation Publishers Series, LondonGoogle Scholar
  33. 33.
    Cerna I, Kluson P, Drobek M et al (2007) Chem Listy 101:994–1001Google Scholar
  34. 34.
    Noyori R (1994) Asymmetric catalysis in organic synthesis. Wiley-Interscience, New YorkGoogle Scholar
  35. 35.
    Von Moos R, Stolz R, Cerny T et al (2003) Swiss Med Weekly 133:77–87Google Scholar
  36. 36.
    Monteiro AL, Zinn FK, De Souza RF et al (1997) Tetrahedron Asym 8:177–179CrossRefGoogle Scholar
  37. 37.
    Pino P, Consiglio G (1979) Fundam Res Homogen Catal 3:519–536CrossRefGoogle Scholar
  38. 38.
    Fan Q-H, Chen Y-M, Chen X-M et al (2000) Chem Commun 789–790Google Scholar
  39. 39.
    Noyori R (1994) Tetrahedron 50:4259–4292CrossRefGoogle Scholar
  40. 40.
    Akutagawa S (1995) Appl Catal A 128:171–207CrossRefGoogle Scholar
  41. 41.
    Fry SE, Pienta NJ (1985) J Am Chem Soc 107:6399–6400CrossRefGoogle Scholar
  42. 42.
    Noyori R (2001) Les Prix Nobel, 186 (http://nobelprizes.com/nobel/)
  43. 43.
    Knowles WS (2001) Prix Nobel, 160 (http://nobelprizes.com/nobel/)
  44. 44.
    Sharpless KB (2001) Prix Nobel, 225 (http://nobelprizes.com/nobel/)
  45. 45.
    Onitsuka K, Ajioka Y, Matsushima Y et al (2001) Organometallics 20:3274–3282CrossRefGoogle Scholar
  46. 46.
    Sugimura T (1999) Catal Surv Jpn 3:37–42CrossRefGoogle Scholar
  47. 47.
    Shimazu S, Ro K, Sento T, Ichikuni N, Uematsu T (1996) J Mol Catal A 107:297–303CrossRefGoogle Scholar
  48. 48.
    Blaser HU (1991) Tetrahedron Asym 2:843–849CrossRefGoogle Scholar
  49. 49.
    Keane MA (1994) Can J Chem 72:372–380CrossRefGoogle Scholar
  50. 50.
    Nitta Y, Imanaka T, Teranishi S (1983) J Catal 80:31–39CrossRefGoogle Scholar
  51. 51.
    Osawa T, Mita S, Iwai A et al (2000) J Mol Catal A Chem 157:207–216CrossRefGoogle Scholar
  52. 52.
    Yasumori I, Yokozeki M, Inoue Y (1981) Faraday Discuss Chem Soc 72:385–396CrossRefGoogle Scholar
  53. 53.
    Osawa T, Harada T (1984) Bull Chem Soc Jpn 57:1518–1521CrossRefGoogle Scholar
  54. 54.
    Izumi Y, Imaida M, Fukawa H et al (1963) Bull Chem Soc Jpn 21Google Scholar
  55. 55.
    Keane MA (1994) Langmuir 10:4560–4565CrossRefGoogle Scholar
  56. 56.
    Bennett A, Christie S, Keane MA et al (1991) Catal Today 10:363–370CrossRefGoogle Scholar
  57. 57.
    Tani K, Yamagata T, Otsuka S et al (1989) Org Synth 67:33–43Google Scholar
  58. 58.
    Noe CR, Weigand A, Pirker S et al (1997) Monatsh Chem 128:301–316CrossRefGoogle Scholar
  59. 59.
    Noe CR, Weigand A, Pirker S (1996) Monatsh Chem 127:1081–1097CrossRefGoogle Scholar
  60. 60.
    Carrea G, Colonna S, Meek AD et al (2004) Tetrahedron Asym 15:2945–2949CrossRefGoogle Scholar
  61. 61.
    Benhamza R, Amrani Y, Sinou D (1985) J Organomet Chem 288:C37–C39CrossRefGoogle Scholar
  62. 62.
    Jessop PG, Morris RH (1992) Coord Chem Rev 121:155–284CrossRefGoogle Scholar
  63. 63.
    Brunner H, Muschiol M, Wischert T et al (1990) Tetrahedron Asym 1:159–162CrossRefGoogle Scholar
  64. 64.
    Osawa T, Harada T, Tai A et al (1997) Stud Surf Sci Catal 108:199–206CrossRefGoogle Scholar
  65. 65.
    Keane MA, Webb G (1992) J Catal 136:1–15CrossRefGoogle Scholar
  66. 66.
    Tani K, Yamagata T, Otsuka S et al (1982) J Chem Soc, Chem Commun 600–601Google Scholar
  67. 67.
    Tani K, Yamagata T, Akutagawa S et al (1984) J Am Chem Soc 106:5208–5217CrossRefGoogle Scholar
  68. 68.
    Otsuka S, Tani K (1985) Asymmetric Synth 5:171–191Google Scholar
  69. 69.
    Genet JP (2003) Acc Chem Res 36:908CrossRefGoogle Scholar
  70. 70.
    Noyori R, Kitamura M (1989) Modern Synthetic Methods 5:115CrossRefGoogle Scholar
  71. 71.
    Noyori R (2003) Adv Synth Catal 345:15–32CrossRefGoogle Scholar
  72. 72.
    Sharpless KB (1985) Chemtech 15:692–700Google Scholar
  73. 73.
    Sharpless KB (2002) Angew Chem. Int Ed 41:2024–2032CrossRefGoogle Scholar
  74. 74.
    Abdur-Rashid K, Faatz M, Lough AJ et al (2001) J Am Chem Soc 123:7473–7474CrossRefGoogle Scholar
  75. 75.
    Shao L, Takeuchi K, Ikemoto M et al (1992) J Organomet Chem 435:133–147CrossRefGoogle Scholar
  76. 76.
    Chauvin Y, Commereuc D, Stern R (1978) J Organomet Chem 146:311–318CrossRefGoogle Scholar
  77. 77.
    De Araujo MP, Valle EMA, Ellena J et al (2004) Polyhedron 23:3163–3172CrossRefGoogle Scholar
  78. 78.
    Hobbs CF, Knowles WS (1981) J Org Chem 46:4422–4427CrossRefGoogle Scholar
  79. 79.
    Noyori R, Ohta M, Hsiao Y et al (1986) J Am Chem Soc 108:7117–7119CrossRefGoogle Scholar
  80. 80.
    Kitamura M, Tokunaga M, Noyori R (1992) J Org Chem 57:4053–4054CrossRefGoogle Scholar
  81. 81.
    Takaya H, Ohta T, Inoue S-I (1995) Org Synth 72:74–85Google Scholar
  82. 82.
    Ohta T, Takaya H, Noyori R (1990) Tetrahedron Lett 31:7189–7192CrossRefGoogle Scholar
  83. 83.
    Pu L (1998) Tetrahedron Asym 9:1457–1461CrossRefGoogle Scholar
  84. 84.
    Halpern J (1983) Pure Appl Chem 55:99–106CrossRefGoogle Scholar
  85. 85.
    Knowles WS (2003) Adv Synth Catal 345:3–13CrossRefGoogle Scholar
  86. 86.
    Miyashita A, Yasuda A, Takaya H et al (1980) J Am Chem Soc 102:7932–7934CrossRefGoogle Scholar
  87. 87.
    Miyashita A, Takaya H, Souchi T et al (1984) Tetrahedron 40:1245–1253CrossRefGoogle Scholar
  88. 88.
    Brown KJ, Berry MS, Waterman KC et al (1984) J Am Chem Soc 106:4717–4723CrossRefGoogle Scholar
  89. 89.
    Takaya H, Mashima K, Koyano K et al (1986) J Org Chem 51:629–635CrossRefGoogle Scholar
  90. 90.
    Knowles WS, Sabacky MJ (1968) Chem Commun 22:1445–1446Google Scholar
  91. 91.
    Osborn JA, Jardine FH, Young JF et al (1966) J Chem Soc A Inorg Phys Theoret 1711–1732Google Scholar
  92. 92.
    Richards CJ, Locke AJ (1998) Tetrahedron Asym 9:2377–2381CrossRefGoogle Scholar
  93. 93.
    Korpiun O, Mislow K (1967) J Am Chem Soc 89:4784–4786CrossRefGoogle Scholar
  94. 94.
    Knowles WS, Sabacky MJ, Vineyard BD (1970) Ann N Y Acad Sci 172:232–237CrossRefGoogle Scholar
  95. 95.
    Morrison JD, Burnett RE, Aguiar AM et al (1971) J Am Chem Soc 93:1301–1303CrossRefGoogle Scholar
  96. 96.
    Knowles WS, Sabacky MJ, Vineyard BD (1977) (Monsanto Co., USA). Int. Pat. Appl.: US 75-602484/4005127; Chem Abstr AN 1977:190463Google Scholar
  97. 97.
    Perry MC, Burgess K (2003) Tetrahedron Asym 14:951–956CrossRefGoogle Scholar
  98. 98.
    Taber DF, Silverberg LJ (1991) Tetrahedron Lett 32:4227–4230CrossRefGoogle Scholar
  99. 99.
    Hoke JB, Hollis LS, Stern EW (1993) J Organomet Chem 455:193–196CrossRefGoogle Scholar
  100. 100.
    Ikariya T, Ishii Y, Kawano H et al (1985) J Chem Soc. Chem Commun 13:922–924Google Scholar
  101. 101.
    King SA, Thompson AS, King AO et al (1992) J Org Chem 57:6689–6691CrossRefGoogle Scholar
  102. 102.
    Kawano H, Ishii Y, Ikariya T et al (1987) Tetrahedron Lett 28:1905–1908CrossRefGoogle Scholar
  103. 103.
    Abdur-Rashid K, Lough AJ, Morris RH (2001) Organometallics 20:1047–1049CrossRefGoogle Scholar
  104. 104.
    Ohkuma T, Koizumi M, Doucet H et al (1998) J Am Chem Soc 120:13529–13530CrossRefGoogle Scholar
  105. 105.
    Wolfson A, Vankelecom IFJ, Geresh S et al (2003) J Mol Catal A Chem 198:39–45CrossRefGoogle Scholar
  106. 106.
    Mashima K, Kusano K-H, Sato N et al (1994) J Org Chem 59:3064–3076CrossRefGoogle Scholar
  107. 107.
    Pavlov VA, Starodubtseva EV, Vinogradov MG et al (2000) Russ Chem Bull 49:725–728CrossRefGoogle Scholar
  108. 108.
    Wolfson A, Vankelecom IFJ, Geresh S et al (2004) J Mol Catal A Chem 217:21–26CrossRefGoogle Scholar
  109. 109.
    Bartek L, Drobek M, Kuzma M et al (2005) Catal Commun 6:61–65CrossRefGoogle Scholar
  110. 110.
    Cornils B, Herrmann WA (1996) Appl Homogen Catal Organomet Compounds 2:575–601Google Scholar
  111. 111.
    Palmer MJ (1999) Will M 10:2045–2049Google Scholar
  112. 112.
    Sellner H, Faber C, Rheiner PB et al (2000) Chem-Eur J 6:3692–3705CrossRefGoogle Scholar
  113. 113.
    Itsuno S, Frechet JMJ (1987) J Org Chem 52:4140–4142CrossRefGoogle Scholar
  114. 114.
    Herrmann WA, Cornils B (1996) Appl Homogen Catal Organomet Compounds 2:1167–1197CrossRefGoogle Scholar
  115. 115.
    Wynberg H (1982) Chemtech 12:116–121Google Scholar
  116. 116.
    Annis DA, Jacobsen EN (1999) J Am Chem Soc 121:4147–4154CrossRefGoogle Scholar
  117. 117.
    Nagel U, Kinzel E (1986) J Chem Soc Chem Commun 14:1098–1099CrossRefGoogle Scholar
  118. 118.
    Pugin B (1996) J Mol Catal A Chem 107:273–279CrossRefGoogle Scholar
  119. 119.
    Mollmann E, Tomlinson P, Holderich WF (2003) J Mol Catal A Chem 206:253–259CrossRefGoogle Scholar
  120. 120.
    De Vos DE, Jacobs PA (2000) Catal Today 57:105–114CrossRefGoogle Scholar
  121. 121.
    De Vos DE, Sels BF, Jacobs PA (2001) Adv Catal 46:1–87CrossRefGoogle Scholar
  122. 122.
    Sabater MJ, Corma A, Domenech A et al (1997) Chem Commun 14:1285–1286CrossRefGoogle Scholar
  123. 123.
    Adima A, Moreau JJE, Man MWC (1997) J Mater Chem 7:2331–2333CrossRefGoogle Scholar
  124. 124.
    Vankelecom IFJ, Tas D, Parton RF et al (1996) Angew Chem. Int Ed 35:1346–1348CrossRefGoogle Scholar
  125. 125.
    Tas D, Thoelen C, Vankelecom IFJ (1997) Chem Commun 23:2323–2324CrossRefGoogle Scholar
  126. 126.
    Bayston DJ, Fraser JL, Ashton MR et al (1998) Org Chem 63:3137–3140CrossRefGoogle Scholar
  127. 127.
    Ohkuma T, Takeno H, Honda Y et al (2001) Adv Synth Catal 343:369–375CrossRefGoogle Scholar
  128. 128.
    Q-h F, C-y R, C-h Y et al (1999) J Am Chem Soc 121:7407–7408CrossRefGoogle Scholar
  129. 129.
    Fan Q-H, Chen Y-M, Chen X-M et al (2000) Chem Commun 9:789–790CrossRefGoogle Scholar
  130. 130.
    Fan QH, Deng GJ, Lin CC et al (2001) Tetrahedron Asym 12:1241–1247CrossRefGoogle Scholar
  131. 131.
    Yu H-B, Hu Q-S, Pu L (2000) Tetrahedron Lett 41:1681–1685CrossRefGoogle Scholar
  132. 132.
    Ohkuma T, Doucet H, Pham T et al (1998) J Am Chem Soc 120:1086–1087CrossRefGoogle Scholar
  133. 133.
    Lamouille T, Saluzzo C, ter Halle R et al (2001) Tetrahedron Lett 42:663–664CrossRefGoogle Scholar
  134. 134.
    Lemaire M, Ter Halle R, Schulz E, Colasson B, Spagnol M, Saluzzo C, Lamouille T (2000) (Rhodia Chimie, Fr.; Centre National de la Recherche Scientifique (C.N.R.S.)). Int Pat Appl: WO 2000-FR82/2000052081; Chem Abstr AN 2000:628204Google Scholar
  135. 135.
    Wan KT, Davis ME (1995) J Catal 152:25–30CrossRefGoogle Scholar
  136. 136.
    Van Brussel W, Renard M, Tas D, Rane VH, Parton R, Jacobs PA (1997) (K.U. Leuven Research & Development, Belg.; Van Brussel, Willy; Renard, Michel; Tas, Diedrik; Rane, Vilas Hare; Parton, Rudy; Jacobs, Pierre A.). Int Pat Appl: WO 96-BE108/9714500; Chem Abstr AN 1997:380998Google Scholar
  137. 137.
    Tas D, Jeanmart D, Parton RF et al (1997) Stud Surf Sci Catal 108:493–500CrossRefGoogle Scholar
  138. 138.
    Tanielyan SK, Augustine RL (1998) Chem Ind 75:101–1107Google Scholar
  139. 139.
    Barnard FJCh, Rouzaud J, Stevenson SH (2005) Org Process Res Dev 9:164–167CrossRefGoogle Scholar
  140. 140.
    Augustine RL, Goel P, Mahata N et al (2004) J Mol Catal A Chem 216:189–197CrossRefGoogle Scholar
  141. 141.
    Bartek L, Kluson P (2004) Chem Listy 98:157–167Google Scholar
  142. 142.
    Bartek L, Kluson P – unpublished resultsGoogle Scholar
  143. 143.
    Floris T, Kluson P, Pelantova H et al (2009) Appl Catal. A 366:160–165Google Scholar
  144. 144.
    Reichardt C (1988) Solvents and solvent effects in organic chemistry, 2nd edn. VCH Verlagsgesellschaft, WeinheimGoogle Scholar
  145. 145.
    Senapati S, Chandra A (2001) J Phys Chem B 105:5106–5109CrossRefGoogle Scholar
  146. 146.
    Zhu K, He H, Xie S et al (2003) Chem Phys Lett 377:317–321CrossRefGoogle Scholar
  147. 147.
    Welton T (2004) Coord Chem Rev 248:2459–2477CrossRefGoogle Scholar
  148. 148.
    Welton T (1999) Chem Rev 99:2071–2084CrossRefGoogle Scholar
  149. 149.
    Wasserscheid P, Gordon CM, Hilgers C (2001) Chem Commun 13:1186–1187CrossRefGoogle Scholar
  150. 150.
    Welton T (2008) Green Chem 10:483CrossRefGoogle Scholar
  151. 151.
    Welton T (2004) Phys Chem Chem Phys 6:3280–3285CrossRefGoogle Scholar
  152. 152.
    Hintermair U, Gutel T, Slawin AMZ et al (2008) J Organomet Chem 693:2407–2414CrossRefGoogle Scholar
  153. 153.
    Ochsner E, Etzold B, Junge K et al (2009) Adv Synth Catal 351:235–245CrossRefGoogle Scholar
  154. 154.
    Gabriel S (1888) Ber Deutsch Chem Ges 21:566CrossRefGoogle Scholar
  155. 155.
    Walden P (1914) Bull Acad Sci St. Petersburg 405–422Google Scholar
  156. 156.
    Earle MJ, McCormac PB, Seddon KR (1999) Green Chem 1:23–25CrossRefGoogle Scholar
  157. 157.
    Chen X, Li X, Hu A et al (2008) Tetrahedron Asym 19:1–14CrossRefGoogle Scholar
  158. 158.
    Ni B, Headley AD et al (2006) Tetrahedron Lett 47:7331–7334CrossRefGoogle Scholar
  159. 159.
    Luo SP, Xu DQ, Yue HD (2006) Tetrahedron Asym 17:2028–2023CrossRefGoogle Scholar
  160. 160.
    Ding J, Armstrong DW (2005) Chirality 17:281–292CrossRefGoogle Scholar
  161. 161.
    Jodry JJ, Mikami K (2004) Tetrahedron Lett 45:4429–4431CrossRefGoogle Scholar
  162. 162.
    Ishida Y, Miyauchi H, Saigo K (2002) Chem Commun 2240–2241Google Scholar
  163. 163.
    Ghatee MH, Zolghadr AR (2008) Fluid Phase Equilib 263:168–175CrossRefGoogle Scholar
  164. 164.
    Pârvulescu VI, Hardacre C (2007) Chem Rev 107:2615–2665CrossRefGoogle Scholar
  165. 165.
    Wilkes JS, Zaworotko MJ (1992) J Chem Soc Chem Commun 965–966Google Scholar
  166. 166.
    Weyershausen B, Lehmann K (2005) Green Chem 7:15–19CrossRefGoogle Scholar
  167. 167.
    Wilkes JS (2002) Green Chem 4:73–80CrossRefGoogle Scholar
  168. 168.
    Greaves TL, Drummond CJ (2008) Chem Rev 108:206–237CrossRefGoogle Scholar
  169. 169.
    Ohta T, Takaya H, Kitamura M, Nagai K, Noyori R (1987) J Org Chem 52:3174–3176CrossRefGoogle Scholar
  170. 170.
    Wasserscheid P, Keim W (2000) Angew Chem. Int Ed 39:3772–3789Google Scholar
  171. 171.
    Baudequin C, Baudoux J, Levillain J et al (2003) Tetrahedron Asym 14:3081–3093CrossRefGoogle Scholar
  172. 172.
    Boon JA, Levisky JA, Pflug JL et al (1986) J Org Chem 51:480–483CrossRefGoogle Scholar
  173. 173.
    Chauvin Y, Gilbert B, Guibard I (1990) J Chem Soc. Chem Commun 23:1715–1716Google Scholar
  174. 174.
    Guernik S, Wolfson A, Herskowitz M et al (2001) Chem Commun 22:2314–2315CrossRefGoogle Scholar
  175. 175.
    Berger A, de Souza RF, Delgado MR et al (2001) Tetrahedron Asym 12:1825–1828CrossRefGoogle Scholar
  176. 176.
    Liu F, Abrams MB, Baker RT et al (2001) Chem Commun 5:433–434CrossRefGoogle Scholar
  177. 177.
    Brown RA, Pollet P, McKoon E et al (2001) J Am Chem Soc 123:1254–1255CrossRefGoogle Scholar
  178. 178.
    Jessop PG, Stanley RR, Brown RA et al (2003) Green Chem 5:123–128CrossRefGoogle Scholar
  179. 179.
    Wolfson A, Vankelecom IFJ, Jacobs PA (2003) Tetrahedron Lett 44:1195–1198CrossRefGoogle Scholar
  180. 180.
    Burk MJ, Feng S, Gross MF et al (1995) J Am Chem Soc 117:8277–8278CrossRefGoogle Scholar
  181. 181.
    Xiao J, Nefkens SCA, Jessop PG (1996) Tetrahedron Lett 37:2813–2816CrossRefGoogle Scholar
  182. 182.
    Uemura T, Zhang X, Matsumura K et al (1996) J Org Chem 61:5510–5516CrossRefGoogle Scholar
  183. 183.
    Jessop PG, Ikariya T, Noyori R (1999) Chem Rev 99:475–493CrossRefGoogle Scholar
  184. 184.
    Sheldon R (2001) Chem Commun 23:2399–2407CrossRefGoogle Scholar
  185. 185.
    Finotello A, Bara JE, Narayan S et al (2008) J Phys Chem B 112:2335–2339CrossRefGoogle Scholar
  186. 186.
    Olivier-Bourbigou H, Magna L (2002) J Mol Catal A Chem 182:419–437CrossRefGoogle Scholar
  187. 187.
    McLean AJ, Muldoon MJ, Gordon CM et al (2002) Chem Commun 17:1880–1881CrossRefGoogle Scholar
  188. 188.
    Anthony JL, Maginn EJ, Brennecke JF (2002) J Phys Chem B 106:7315–7320CrossRefGoogle Scholar
  189. 189.
    Talaty ER, Raja S, Storhaug VJ et al (2004) J Phys Chem B 108:13177–13184CrossRefGoogle Scholar
  190. 190.
    Chaudhari RV, Bhanage BM, Deshpande RM et al (1995) Nature 373:501–503CrossRefGoogle Scholar
  191. 191.
    Gordon CM (2001) Appl Catal A 222:101–117CrossRefGoogle Scholar
  192. 192.
    Cammarata L, Kazarian SG, Salter PA et al (2001) Phys Chem Chem Phys 3:5192–5200CrossRefGoogle Scholar
  193. 193.
    Wolfson A, Vankelecom IFJ, Jacobs PA (2005) J Organomet Chem 690:3558–3566CrossRefGoogle Scholar
  194. 194.
    Crosthwaite JM, Muldoon MJ, Aki SNVK et al (2006) J Phys Chem B 110:9354–9361CrossRefGoogle Scholar
  195. 195.
    Driessen-Hölscher B (1998) Adv Catal 42:473–505CrossRefGoogle Scholar
  196. 196.
    Horvath I, Rabai J (1994) Science 266:72–75CrossRefGoogle Scholar
  197. 197.
    Suarez PAZ, Dullius JEL, Einloft S et al (1996) Polyhedron 15:1217–1219CrossRefGoogle Scholar
  198. 198.
    Wagner M (2004) Chim Oggi 22:17–21Google Scholar
  199. 199.
    Floris T, Kluson P, Muldoon MJ et al (2009) Catal Lett doi:10.1007/s10562-009-0233-3Google Scholar
  200. 200.
    Floris T, Kluson P, unpublished resultsGoogle Scholar
  201. 201.
    Hashiguchi S, Fujii A, Takehara J et al (1995) J Am Chem Soc 117:7562–7563CrossRefGoogle Scholar
  202. 202.
    Xiaohua H, Jackie Y (2007) Chem Commun 18:1825–1827Google Scholar
  203. 203.
    Ying JY (2006) Chem Eng Sci 61:1540–1548CrossRefGoogle Scholar
  204. 204.
    Badley RD, Ford WT (1989) J Org Chem 54:5437–5443CrossRefGoogle Scholar
  205. 205.
    Schmidt-Winkel P, Lukens WW Jr, Zhao D et al (1999) J Am Chem Soc 121:254–255CrossRefGoogle Scholar
  206. 206.
    Samec JSM, Bäckvall J-E, Andersson PG et al (2006) Chem Soc Rev 35:237–248CrossRefGoogle Scholar
  207. 207.
    Noyori R, Hashiguchi S (1997) Acc Chem Res 30:97–102CrossRefGoogle Scholar
  208. 208.
    Halpern J, Harrod JF, James BR (1966) J Am Chem Soc 88:5150–5155CrossRefGoogle Scholar
  209. 209.
    Basu B, Mandal B, Das S et al (2008) Beilstein J Org Chem 4:53CrossRefGoogle Scholar
  210. 210.
    Isaeva V, Sharf V, Nifant’ev N et al (1998) Stud Surf Sci 118:237–243Google Scholar
  211. 211.
    Parambadath S, Singh AP (2009) Catal Today 141:161–167CrossRefGoogle Scholar
  212. 212.
    Zhao D, Feng J, Huo Q et al (1998) Science 279:548–552CrossRefGoogle Scholar

Copyright information

© Springer Netherlands 2010

Authors and Affiliations

  • Agnes Zsigmond
    • 1
  • Ferenc Notheisz
    • 1
  • Petr Kluson
    • 1
  • Tomas Floris
    • 1
  1. 1.Department of Organic ChemistryUniversity of SzegedSzegedHungary

Personalised recommendations