Advertisement

Reactivity and Selectivity of Heterogenized Homogeneous Catalysts: Insights from Molecular Simulations

  • Kourosh Malek
  • Rutger A. Van Santen
Chapter
Part of the Catalysis by Metal Complexes book series (CMCO, volume 33)

Abstract

Immobilized metal complexes on nanoporous materials have recently been proposed as a novel class of heterogeneous enantioselective catalyst for epoxidation of unfunctionalized olefins as well as hydrogenation, alkylation, and nitroaldol reactions. The porous hosted materials affect catalytic performance due to a cooperative interaction among the nanoporous solid, immobilizing linker, and metal complex asymmetry. The effects of mesoporous materials and immobilizing agents on chiral catalysis are not well understood, however, the catalysts confined in nanopores show comparable or even higher conversions and enantioselectivity compared to their homogeneous counterparts. This chapter highlights major scientific problems for fundamental understanding and design of heterogenized homogeneous catalysts. It describes in detail the pivotal role of a sound framework in physical theory and molecular modeling in systematic efforts towards better materials and catalytic performance optimization. The common threads of the various topics addressed is the wide range of scales that has to be considered in establishing relations between structure, physicochemical properties, and catalytic performance. Physical theory and modeling employ a variety of methods, encompassing ab-initio calculations, molecular simulations, and the continuum model of transport and reaction in nanoporous materials. We particularly describe how molecular simulations can be used to investigate the origin of enantioselectivity of an anchored metal complex in nanoporous materials. These studies provide new insights into the steric effects that relate to choices of substrate and linker and to the interplay with mesopore confinement. We also bring detailed example of employing molecular simulations to unravel the catalytic properties of metallomacrocyclics for the electrochemical reduction of molecular oxygen in aqueous media. We rationalize the importance of immobilization and show how it relates to the steric communication between the substrate and the metal complex. These fundamental concepts are important for the interpretation of the enantioselectivity of immobilized organometallic catalysts in nanoporous materials.

Keywords

Oxygen Reduction Reaction Density Functional Theory Calculation Mesoporous Material Phenoxyl Group Epoxidation Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Sahimi M, Gavalas GR, Tsotsis TT (1990) Chem Eng Sci 45:1443–502CrossRefGoogle Scholar
  2. 2.
    Torquato S (2002) Random hetergeneous materials. Springer, New YorkGoogle Scholar
  3. 3.
    Sahimi M (2003) Heterogeneous materials, Part I and Part II. Springer, HeidelbergGoogle Scholar
  4. 4.
    Sahimi M (1993) Rev Mod Phys 65:1393–1534CrossRefGoogle Scholar
  5. 5.
    Rajabbeigi N, Elyassi B, Tsotsis TT, Sahimi M (2009) J Mem Sci 335:5–12CrossRefGoogle Scholar
  6. 6.
    Dubbeldam D, Snurr RQ (2007) Mol simul 33:305–325CrossRefGoogle Scholar
  7. 7.
    Maginn EJ, Bell AT, Theodorou DN (1993) J Phys Chem 97:4173–4181CrossRefGoogle Scholar
  8. 8.
    Kärger J, Ruthven DM (1992) Diffusion in zeolites and other microporous solids. Wiley, New YorkGoogle Scholar
  9. 9.
    Breck DW (1974) Zeolite molecular sieves. Wiley, New YorkGoogle Scholar
  10. 10.
    Barrer RM (1982) Hydrothermal chemistry of zeolites. Academic, LondonGoogle Scholar
  11. 11.
    Szostak R (1998) Molecular sieves-principles of synthesis and identification, 2nd edn. Blackie, LondonGoogle Scholar
  12. 12.
    Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Science 279:540CrossRefGoogle Scholar
  13. 13.
    Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD (1998) J Am Chem Soc 20:6024CrossRefGoogle Scholar
  14. 14.
    Yang Q, Liu J, Zhang L (2009) C Li. J Mater Chem 19:1945–1955CrossRefGoogle Scholar
  15. 15.
    Yang Q, Han D, Yang H, Li C (2008) Chem Asian J 3:1214–1229CrossRefGoogle Scholar
  16. 16.
    Noyori R (2002) Angew Chem Int Ed 41:2008–2022CrossRefGoogle Scholar
  17. 17.
    Trost BM (2004) Proc Natl Acad Sci USA 101:5348–5355CrossRefGoogle Scholar
  18. 18.
    (a) Knowles WS, Sabacky MJ, Vineyard BD (1968) Chem Commun (London) 1445–1446; (b) Knowles WS, Noyori R (2007) Acc Chem Res 40:1238–1239Google Scholar
  19. 19.
    Ohkuma T, Ishii D, Takeno H, Noyori R (2000) J Am Chem Soc 122:6510–6511CrossRefGoogle Scholar
  20. 20.
    Yan YJ, Zhang XM (2006) J Am Chem Soc 128:7198–7202CrossRefGoogle Scholar
  21. 21.
    Zhang WC, Zhang XM (2006) Angew Chem Int Ed 45:5515–5518CrossRefGoogle Scholar
  22. 22.
    Sandoval CA, Ohkuma T, Utsumi N, Tsutsumi K, Murata K, Noyori R (2006) Chem Asian J 1:102–110CrossRefGoogle Scholar
  23. 23.
    Sandoval CA, Ohkuma T, Muniz K, Noyori R (2003) J Am Chem Soc 125:13490–13503CrossRefGoogle Scholar
  24. 24.
    Wang WB, Lu SM, Yang PY, Han XW, Zhou YG (2003) J Am Chem Soc 125:10536–10537CrossRefGoogle Scholar
  25. 25.
    Jacobsen EN, Pfaltz A, Yamamoto H (eds) (1999) Comprehensive asymmetric catalysis, vol 1. Springer, BerlinGoogle Scholar
  26. 26.
    Noyori R (ed) (1994) Asymmetric catalysis in organic synthesis. Wiley, New YorkGoogle Scholar
  27. 27.
    Ojima I (ed) (1999) Catalytic asymmetric synthesis. Wiley, New YorkGoogle Scholar
  28. 28.
    Mariz R, Luan X, Garri M, Linden A, Dorta R (2008) J Am Chem Soc 130:2172–2173CrossRefGoogle Scholar
  29. 29.
    Ohkuma T, Tsutsumi K, Utsumi N, Arai N, Noyori R, Murata K (2007) Org Lett 9:255–257CrossRefGoogle Scholar
  30. 30.
    Ohkuma T, Utsumi N, Tsutsumi K, Murata K, Sandova C, Noyori R (2006) J Am Chem Soc 128:8724–8725CrossRefGoogle Scholar
  31. 31.
    Balskus EP, Jacobsen EN (2007) Science 317:1736–1740CrossRefGoogle Scholar
  32. 32.
    Wiesner M, Revell JD, Wennemers H (2008) Angew Chem Int Ed 47:1871–1874CrossRefGoogle Scholar
  33. 33.
    Yamaguchi T, Matsumoto K, Satio B, Katsuki T (2007) Angew Chem Int Ed 46:4729–4731Google Scholar
  34. 34.
    Blaser HU, Schmidt E (eds) (2004) Asymmetric catalysis on industrial scale. Wiley, WeinheimGoogle Scholar
  35. 35.
    Zhong L, Gao Q, Gao JS, Xiao JL, Li C (2007) J Catal 250:360–364CrossRefGoogle Scholar
  36. 36.
    Burgemeister K, Franci G, Gego VH, Greiner L, Hugl H, Leitner W (2007) Chem Eur J 13:2798–2804CrossRefGoogle Scholar
  37. 37.
    Malek K, Jansen APJ, Li C, van Santen RA (2007) J Catal 246:127–135CrossRefGoogle Scholar
  38. 38.
    Malek K, Li C, van Santen RA (2007) J Mol Catal A Chem 271:98–104CrossRefGoogle Scholar
  39. 39.
    Zhang H, Wang YM, Zhang L, Gerritsen G, Abbenhuis HCL, van Santen RA, Li C (2008) J Catal 256:226–236CrossRefGoogle Scholar
  40. 40.
    Lalande G, Guay D, Dodelet JP, Majetich SA, McHenry ME (1997) Chem Mat 9:784–790CrossRefGoogle Scholar
  41. 41.
    Fournier J, Lalande G, Cote R, Guay D, Dodelet JP (1997) J Electrochem Soc 144:218–226CrossRefGoogle Scholar
  42. 42.
    Wang H, Cote R, Faubert G, Guay D, Dodelet JP (1999) J Phys Chem B 103:2042–2049CrossRefGoogle Scholar
  43. 43.
    Wei G, Wainright JS, Savinell RF (2000) J New Mat Electrochem Syst 3:121–129Google Scholar
  44. 44.
    Cote R, Lalande G, Guay D, Dodelet JP, Denes G (1998) Electrochem Solid State Lett 145:2411–2418Google Scholar
  45. 45.
    Zagal JH (1992) Coord Chem Rev 119:89–136CrossRefGoogle Scholar
  46. 46.
    Sidik RA, Anderson AB, Subramanian NP, Kumaraguru SP, Popov BN (2006) J Phys Chem B 110:1784–1793Google Scholar
  47. 47.
    Jain M, Chuo S, Siedle A (2006) J Phys Chem B 110:4179–4185CrossRefGoogle Scholar
  48. 48.
    Vayner E, Anderson AB (2007) J Phys Chem C 111:9330–9336CrossRefGoogle Scholar
  49. 49.
    Shi Z, Zhang J (2007) J Phys Chem C 111:7084–7090CrossRefGoogle Scholar
  50. 50.
    Zagal JH, Paez M, Tanaka AA, dos Santos JR, Linkous C (1992) J Electroanal Chem 339:13–30CrossRefGoogle Scholar
  51. 51.
    Li C (2004) Catal Rev 46:419CrossRefGoogle Scholar
  52. 52.
    Xiang S, Zhang Y, Xin Q, Li C (2002) Chem Commun 22:2696CrossRefGoogle Scholar
  53. 53.
    Zhang H, Xiang S, Li C (2005) Chem Commun 1209Google Scholar
  54. 54.
    Piaggio P, McMorn P, Langham C, Bethel D, Bulman-Page PC, Hancock FE, Hutchings GJ (1998) New J Chem 22:1167CrossRefGoogle Scholar
  55. 55.
    Piaggio P, McMorn P, Murphy D, Bethel D, Bulman-Page PC, Hancock FE, Sly C, Kerton OJ, Hutchings GJ (2000) J Chem Soc Perkin Trans 2:2008Google Scholar
  56. 56.
    Corma A (2004) Catal Rev Sci Eng 46:369CrossRefGoogle Scholar
  57. 57.
    McGarrigle EM, Gilheany DG (2005) Chem Rev 105:1563CrossRefGoogle Scholar
  58. 58.
    Zhang H, Zhang Y, Li C (2006) J Catal 238:369CrossRefGoogle Scholar
  59. 59.
    Linker T (1997) Angew Chem Int Ed 36:2060CrossRefGoogle Scholar
  60. 60.
    Jacobsen H, Cavallo L (2001) Chem Eur J 7:800CrossRefGoogle Scholar
  61. 61.
    Cavallo L, Jacobsen H (2000) Angew Chem Int Ed 39:589CrossRefGoogle Scholar
  62. 62.
    Khavrutskii IV, Musaev DG, Morokuma K (2003) Inorg Chem 42:2606CrossRefGoogle Scholar
  63. 63.
    Linde C, Akermark B, Norrby PO, Svensson M (1999) J Am Chem Soc 121:5083CrossRefGoogle Scholar
  64. 64.
    Cavallo L, Jacobsen H (2004) Inorg Chem 43:2175CrossRefGoogle Scholar
  65. 65.
    El-Bahraoui J, Wiest O, Feichtinger D, Plattner DA (2001) Angew Chem Int Ed 40:2073CrossRefGoogle Scholar
  66. 66.
    Dominguez I, Fornes V, Sabater MJ (2004) J Catal 228:92CrossRefGoogle Scholar
  67. 67.
    Ayala V, Corma A, Iglesias M, Sanchez F (2004) J Mol Catal 221:201Google Scholar
  68. 68.
    Alvarez S, Alemany P, Avnir D (2005) Chem Soc Rev 34:313CrossRefGoogle Scholar
  69. 69.
    Lipkowitz K, Schefzick S (2002) Chirality 14:677CrossRefGoogle Scholar
  70. 70.
    Alvarez S, Schefzick S, Lipkowitz K, Avnir D (2003) Chem Eur J 9:5832CrossRefGoogle Scholar
  71. 71.
    Zabrodsky H, Peleg S, Avnir D (1992) J Am Chem Soc 114:7843CrossRefGoogle Scholar
  72. 72.
    Zabrodsky H, Avnir D (1995) J Am Chem Soc 117:462CrossRefGoogle Scholar
  73. 73.
    Shi S, Yan L, Yang Y, Fisher-Shaulsky J, Thacher T (2003) J Comput Chem 24:1059CrossRefGoogle Scholar
  74. 74.
    Mollmann E, Tomlinson P, Holderich WF (2003) J Mol Catal 206:253CrossRefGoogle Scholar
  75. 75.
    Handgraaf JW, Reek JNH, Bellarosa L, Zerbetto F (2005) Adv Synth Catal 347:792CrossRefGoogle Scholar
  76. 76.
    Avery KA, Mann R, Norton M, Willock DJ (2003) Topics Catal 25:89CrossRefGoogle Scholar
  77. 77.
    Cavallo L, Jacobsen H (2003) J Phys Chem 107:5466CrossRefGoogle Scholar
  78. 78.
    Sears JS, Sherill CD (2006) J Chem Phys 124:144314CrossRefGoogle Scholar
  79. 79.
    Chang S, Galvin JM, Jacobsen EN (1994) J Am Chem Soc 116:6937CrossRefGoogle Scholar
  80. 80.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, ReVision, B01. Gaussian, Wallingford, CTGoogle Scholar
  81. 81.
    Zhang H, Li C (2006) Tetrahedron 62:6640CrossRefGoogle Scholar
  82. 82.
    Finnley NS, Pospisil PJ, Chang S, Palicki M, Konsler RG, Hansen KB, Jacobsen EN (1997) Angew Chem 109:1798CrossRefGoogle Scholar
  83. 83.
    Eikerling MH, Malek K, Wang Q (2008) Catalyst layer modeling: structure, properties, and performance. In: Zhang JJ (ed) PEM fuel cells catalysts and catalyst layers – fundamentals and applications. London, SpringerGoogle Scholar

Copyright information

© Springer Netherlands 2010

Authors and Affiliations

  1. 1.National Research Council of CanadaInstitute for Fuel Cell InnovationVancouverCanada
  2. 2.Department of ChemistrySimon Fraser UniversityBurnabyCanada
  3. 3.Schuit Institute of Catalysis, ST/SKAEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations