Evaluation of Case Based Reasoning for Clinical Decision Support Systems applied to Acute Meningitis Diagnose

  • Cecilia Maurente
  • Ernesto Ocampo Edye
  • Silvia Herrera Delgado
  • Daniel Rodriguez García
Conference paper

Abstract

This work presents a research about the applicability of Case Based Reasoning to Clinical Decision Support Systems (CDSS), particularly applied to the diagnosis of the disease known as Acute Bacterial Meningitis.

In the last few years, the amount of information available to the medical doctor, who usually finds himself in the situation of making a diagnosis of one or more diseases, has dramatically increased. However, the specialist’s ability to understand, synthesize and take advantage of such information in the alwayslittle time during the medical act remains to be developed.

Many contributions have been made by the computer sciences, especially those by Artificial intelligence, in order to solve these problems. This work focuses on the diagnose of the Acute Bacterial Meningitis, and carries out a comparative assessment of the quality of a Clinical Decision Support System made through Case Based Reasoning, in contrast to an already existing CDSS applied to the same task, but developed using a technique called Bayesian expert system.

Keywords

Intelligent Systems Expert Systems Case Based Reasoning Clinical Decision Support Systems Clinical diagnose Artificial Intelligence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Aamodt, A. and Plaza, E., "Case-Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches," IOS Press, vol. Vol. 7: 1 pp. 39–59, 2004.Google Scholar
  2. [2]
    Berner, E. S. Clinical Decision Support Systems Theory and Practice. 1998. Springer.Google Scholar
  3. [3]
    John McCarthy. Some Expert System Need Common Sense. 1984. Standford University.Google Scholar
  4. [4]
    Hart, P. E., R.O.Duda, and M.T.Einaudi, "Prospector– A Computer-Based Consultation System for Mineral Exploration," Mατηεματιχαλ Γεολογψ, vol. 10 pp. 589–610, 1978.Google Scholar
  5. [5]
    Ocampo, E., Herrera, S., Machado, F., and Ruibal, A. Diseño y construcción de sistema experto de diagnóstico de meningitis aguda supurada, basado en máquina de inferencia bayesiana. 2003. CISIC. 1-10-2003.Google Scholar
  6. [6]
    Kolodner, J. Case - Based Reasoning. 1993. Morgan Kaufmann.Google Scholar
  7. [7]
    Pal, S. P. and Shiu, S. C. K., Foundations of Soft Case-Based Reasoning New Jersey: Wiley Interscience, 2004.CrossRefGoogle Scholar
  8. [8]
    David B.Leake, "CBR in context: The Present and Future," AAAI Press / MIT Press, 1996, pp. 1–35.Google Scholar
  9. [9]
    San Miguel Carrillo, J. A. Introducción al Razonamiento Basado en Casos. 2007. Práctica de Inteligencia Artificial II. Universidad de Valladolid.Google Scholar
  10. [10]
    Watson, I., Applying Case-Based Reasoning: Techniques for Enterprise Systems California: Morgan Kaufmann , 1997.MATHGoogle Scholar
  11. [11]
    Otavio Alvares, L. Raciocínio Baseado em Casos. 2006. Informática UFRGS.Google Scholar
  12. [12]
    Díaz Agudo, M. B. Una aproximación ontológica al desarrollo de sistemas de razonamiento basado en casos. 6–40. 2002.Google Scholar
  13. [13]
    Phyllis Koton. Using experience in learning and problem solving. 1989. Massachusetts Institute of Technology, Laboratory of Computer Science.Google Scholar
  14. [14]
    Porter, B. W. and Bareiss, E. R. PROTOS: An experiment in knowledge acquisition for heuristic classification tasks. In Proceedings of the First International Meeting on Advnces in Learning (IMAL), Les Arcs. 1986.Google Scholar
  15. [15]
    Watson, I. D. and Abdullah, S. Developing Case-Based Reasoning Systems: A Case Study in Diagnosing Building Defects. IEE Colloquium on Case-Based Reasoning: Prospects for Applications, Digest. 1994. In, Proc.Google Scholar
  16. [16]
    Recio García, J. A., Diaz, Agudo, B., and González Calero, P. JColibrí 2 Tutorial. 2008. Universidad Complutense de Madrid.Google Scholar
  17. [17]
    Recio, J. A., Anto, o Sánchez, Díaz, gudo, B., Gonz, ez-Cal, and o, A. jCOLIBRI 1.0 in a nutshell. A software tool for designing CBR systems*. 2005. Spain, Universidad Complutense de Madrid.Google Scholar
  18. [18]
    Sánchez Ruiz Granados, A. A. jColibrí: estado actual y posibles mejoras. 2004. Universidad Complutense de Madrid, España.Google Scholar
  19. [19]
    Boagaerts, S. and Leake, D. Facilitating CBR for Incompletely-Described Cases: Distance Metrics for Partial Problem Descriptions. 2004. Indian University.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Cecilia Maurente
    • 1
  • Ernesto Ocampo Edye
    • 1
  • Silvia Herrera Delgado
    • 2
  • Daniel Rodriguez García
    • 3
  1. 1.Facultad de Ingeniería y TecnologíasUniversidad Católica del UruguayMontevideoUruguay
  2. 2.Centro de Referencia Nacional de VIH-SIDAHospital Pereira-RossellMontevideoUruguay
  3. 3.Departamento de Ciencias de la ComputaciónUniversidad de Alcalá de HenaresAlcalá de HenaresEspaña

Personalised recommendations