A WALE-Similarity Mixed Model for Large-Eddy Simulation of Wall Bounded Compressible Turbulent Flows

Conference paper
Part of the ERCOFTAC Series book series (ERCO, volume 13)


Wall-jet interaction is studied with Large Eddy Simulation (LES) in which a mixed similarity Sub-Grid Scale (SGS) closure is combined with the Wall-Adapting Local Eddy-viscosity (WALE) model for the eddy-viscosity term. Reduced macrotemperature and macropressure are introduced to deduce a weakly compressible form of the mixed similarity model and the relevant formulation for the energy equation is deduced accordingly. LES prediction capabilities are assessed by comparing flow statistical properties against experiment of an unconfined impinging round-jet at Reynolds number of 23,000 and 70,000.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akhavan R., Ansari A., Kang S., Mangiavacchi N. (2000). J. Fluid Mech., 408: 83–120.MATHCrossRefGoogle Scholar
  2. 2.
    Anderson R., Meneveau C. (1999). Flow Turbul. Combust., 62(3): 201–225.MATHCrossRefGoogle Scholar
  3. 3.
    Bardina J., Ferziger J., Reynolds W. (1984). Improved turbulence models based on LES of homogeneous incompressible turbulent flows. Report TF-19, Thermosciences Division, Dept. Mechanical Engineering, Stanford University.Google Scholar
  4. 4.
    Cooper D., Jackson D., Launder B., Liao G. (1993). Int. J. Heat Mass Tran., 36(10): 2675–2684.CrossRefGoogle Scholar
  5. 5.
    Ducros F., Laporte F., Soulères T., Guinot V., Moinat P., Caruelle B. (2000). J. Comput. Phys., 161: 114–139.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Erlebacher G., Hussaini M., Speziale C., Zang T. (1992). J. Fluid Mech., 238: 155–185.MATHCrossRefGoogle Scholar
  7. 7.
    Geers L., Tummers M., Hanjalić K. (2004). Exp. Fluids, 36(6): 946–958.CrossRefGoogle Scholar
  8. 8.
    Germano M. (1986). Phys. Fluids, 29(7): 2323–2324.MATHCrossRefGoogle Scholar
  9. 9.
    Germano M., Piomelli U., Moin P., Cabot W. (1991). Phys. Fluids A-Fluid, 3(7): 1760–1765.MATHCrossRefGoogle Scholar
  10. 10.
    Hadžiabdić M., Hanjalić K. (2008). J. Fluid Mech., 596: 221–260.MATHGoogle Scholar
  11. 11.
    Hällqvist T. (2006). Large Eddy Simulation of Impinging Jets with Heat Transfer. Ph.D. thesis, Royal Institute of Technology, Department of Mechanics, S-100 44 Stockholm, Sweden.Google Scholar
  12. 12.
    Klein M., Sadiki A., Janicka J. (2003). J. Comput. Phys., 186: 652–665.MATHCrossRefGoogle Scholar
  13. 13.
    Lesieur M., Métais O., Comte P., Large-Eddy Simulations of Turbulence (Cambridge University Press, 2005).Google Scholar
  14. 14.
    Liu S., Meneveau C., Katz J. (1994). J. Fluid Mech., 275: 83–119.CrossRefGoogle Scholar
  15. 15.
    Lodato G., Domingo P., Vervisch L. (2008). J. Comput. Phys., 227(10): 5105–5143.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Lodato G., Vervisch L., Domingo P. (2009). Phys. Fluids, 21(3): 035102.CrossRefGoogle Scholar
  17. 17.
    Meneveau C., Katz J. (2000). Annu. Rev. Fluid Mech., 32(1): 1–32.CrossRefMathSciNetGoogle Scholar
  18. 18.
    Meneveau C., Lund T., Cabot W. (1996). J. Fluid Mech., 319: 353–385.MATHCrossRefGoogle Scholar
  19. 19.
    Moin P., Squires K., Cabot W., Lee S. (1991). Phys. Fluids A-Fluid, 3(11): 2746–2757.MATHCrossRefGoogle Scholar
  20. 20.
    Nicoud F., Ducros F. (1999). Flow Turbul. Combust., 62(3): 183–200.MATHCrossRefGoogle Scholar
  21. 21.
    Sagaut P., Large Eddy Simulation for Incompressible Flows: An Introduction (Springer-Verlag Berlin Heidelberg, 2001), 2nd edn.Google Scholar
  22. 22.
    Salvetti M., Banerjee S. (1995). Phys. Fluids, 7(11): 2831–2847.MATHCrossRefGoogle Scholar
  23. 23.
    Zang Y., Street R.L., Koseff J.R. (1993). Phys. Fluids A-Fluid, 5(12): 3186–3196.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.INSA-Rouen, UMR-CNRS-6614-CORIA, Campus du MadrilletSaint Etienne du Rouvray CedexFrance

Personalised recommendations