DNS of Aircraft Wake Vortices: The Effect of Stable Stratification on the Development of the Crow Instability

  • G. N. Coleman
  • R. Johnstone
  • C. P. Yorke
  • I. P. Castro
Conference paper
Part of the ERCOFTAC Series book series (ERCO, volume 13)

Abstract

A numerical experiment is performed to determine the likelihood that the Crow instability will mitigate the potentially hazardous effects of the buoyancy-induced rebound of initially parallel line vortices. Parameters are chosen to correspond to wake vortices downstream of an elliptically loaded wing with large span (typical of the A380) landing in very stable conditions. The DNS is initiated by perturbing the vortex pair into the shape of the linearly most unstable Crow eigenmode, with a maximum displacement of 1% of the initial distance between the pair. Under these conditions, the Crow instability progresses fast enough to break the two dimensionality of the vortex system before it returns to its original elevation. This suggests that in many cases the Crow instability will prevent the rebounding vorticity from being a serious danger to following aircraft. Whether or not this will always happen in practice is an open question, requiring further investigation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • G. N. Coleman
    • 1
  • R. Johnstone
    • 1
  • C. P. Yorke
    • 1
  • I. P. Castro
    • 1
  1. 1.School of Engineering SciencesUniversity of SouthamptonSouthamptonUK

Personalised recommendations