Coherent Control for Molecular Ultrafast Spectroscopy

  • Tiago Buckup
  • Marcus Motzkus
  • Jürgen Hauer
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Quantum control spectroscopy (QCS) is a powerful modern experimental concept to disentangle complex dynamics in molecular quantum systems and combines coherent control methods with time-resolved optical spectroscopy. By manipulating the photo-induced reaction pathway with specifically tailored excitation light fields, it offers a new spectroscopic degree of freedom in addition to classic spectral and temporal coordinates. Particularly interesting in QCS is the excitation with well-defined pulse sequences which will be shown on two examples. In a first series of experiments the comparison of excitations with one or two pulses allows to unravel the complex energy flow network in all-">">trans-β-carotene and its homologs. In a second experiment, we go a step further and use multipulse excitation via phase shaping in a prototype dye molecule to analyze the role of electronic coherence time for population and vibrational coherence enhancement.


Coherent control open-loop control pulse shaping carotenoids 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersson, P. O., Gillbro, T.: Photophysics and dynamics of the lowest excited singlet-state in long substituted polyenes with implications to the very long-chain limit. J. Chem. Phys. 103(7), 2509–2519 (1995)CrossRefGoogle Scholar
  2. Assion, A., Baumert, T., Bergt, M., Brixner, T., Kiefer, B., Seyfried, V., Strehle, M., Gerber, G.: Control of chemical reactions by feedback-optimized pulse-shaped fs laser pulses. Science 282, 919–922 (1998)CrossRefGoogle Scholar
  3. Bachilo, S. M.: Beta-Carotene Triplet-State Absorption in the near-Ir Range. J. Photochem. Photobiol. 91(2), 111–115 (1995)CrossRefGoogle Scholar
  4. Bardeen, C. J., Yakovlev, V. V., Wilson, K. R., Carpenter, S. D., Weber, P. M., Warren, W. S.: Feedback quantum control of molecular electronic population transfer. Chem. Phys. Lett. 280(1–2), 151–158 (1997)CrossRefGoogle Scholar
  5. Braun, M., Sobotta, C., Durr, R., Pulvermacher, H., Malkmus, S.: Analysis of wave packet motion in frequency and time domain: Oxazine 1. J. Phys. Chem. A 110(32), 9793–9800 (2006)CrossRefGoogle Scholar
  6. Brixner, T., Stenger, J., Vaswani, H. M., Cho, M., Blankenship, R. E., Fleming, G. R.: Two-dimensional spectroscopy of electronic couplings in photosynthesis. Nature 434(7033), 625–628 (2005)CrossRefGoogle Scholar
  7. Brumer, P., Shapiro, M.: Control of unimolecular reactions using coherent light. Chem. Phys. Lett. 126(6), 541–546 (1986)CrossRefGoogle Scholar
  8. Brumer, P., Shapiro, M.: One photon mode selective control of reactions by rapid or shaped laser-pulses — an emperor without clothes. Chem. Phys. 139(1), 221–228 (1989)CrossRefGoogle Scholar
  9. Buckup, T., Savolainen, J., Wohlleben, W., Hashimoto, H., Cogdell, R. J., Herek, J. L., Motzkus, M.: Pump-probe and pump-deplete-probe spectroscopy on carotenoids with N = 9–15. In: Martin, M. M., Hynes, J. T. (eds.), Femtochemistry, Femtobiology: Ultrafast Events in Molecular Science, pp. 453–456. Elsevier, Amsterdam Netherlands (2004)CrossRefGoogle Scholar
  10. Buckup, T., Wohlleben, W., Savolainen, J., Heinz, B., Hashimoto, H., Cogdell, R. J., Herek, J. L., Motzkus, M.: Energy flow in carotenoids, studied with pump-deplete-probe, multiphoton and coherent control spectroscopy. Ultrafast Phenom. Xiv 79, 368–370 (2005)CrossRefGoogle Scholar
  11. Buckup, T., Savolainen, J., Wohlleben, W., Herek, J. L., Hashimoto, H., Correia, R. R. B., Motzkus, M.: Pump-probe and pump-deplete-probe spectroscopies on carotenoids with N = 9–15 conjugated bonds. J. Chem. Phys. 125(19), Art. No. 194505 (2006)Google Scholar
  12. Buckup, T., Hauer, J., Serrat, C., Motzkus, M.: Control of excited-state population and vibrational coherence with shaped-resonant and near-resonant excitation. J. Phys. B 41(7), 074024 (2008)CrossRefGoogle Scholar
  13. Cerullo, G., Polli, D., Lanzani, G., De Silvestri, S., Hashimoto, H., Cogdell, R. J.: Photosynthetic light harvesting by carotenoids: detection of an intermediate excited state. Science 298(5602), 2395–2398 (2002)CrossRefGoogle Scholar
  14. Christensen, R. L.: The electronic states of carotenoids. In: Christensen, R. L. (ed.), The Photochemistry of Carotenoids, pp. 137–157. Kluwer, Dordrecht (1999)Google Scholar
  15. Ciobanu, L., Webb, A. G., Pennington, C. H.: Magnetic resonance imaging of biological cells. Prog. Nucl. Magn. Reson. Spectrosc. 42(3–4), 69–93 (2003)CrossRefGoogle Scholar
  16. Englman, R., Jortner, J.: Energy gap law for radiationless transitions in large molecules. Mol. Phys. 18(2), 145–164 (1970)CrossRefGoogle Scholar
  17. Florean, A. C., Carroll, E. C., Spears, K. G., Sension, R. J., Bucksbaum, P. H.: Optical control of excited-state vibrational coherences of a molecule in solution: The influence of the excitation pulse spectrum and phase in LD690. J. Phys. Chem. B 110(40), 20023–20031 (2006)CrossRefGoogle Scholar
  18. Frank, H. A., Josue, J. S., Bautista, J. A., van der Hoef, I., Jansen, F. J., Lugtenburg, J., Wiederrecht, G., Christensen, R. L.: Spectroscopic and photochemical properties of open-chain carotenoids. J. Phys. Chem. B 106(8), 2083–2092 (2002)CrossRefGoogle Scholar
  19. Frank, H., Cong, H., Gibson, G., Birge, R., Niedzwiedzki, D.: Ultrafast time-resolved absorption spectroscopy of geometric isomers of open-chain carotenoids. Photosynth. Res. 91(2–3), 158–158 (2007)Google Scholar
  20. Fujii, R., Inaba, T., Watanabe, Y., Koyama, Y., Zhang, J. P.: Two different pathways of internal conversion in carotenoids depending on the length of the conjugated chain. Chem. Phys. Lett. 369(1–2), 165–172 (2003)CrossRefGoogle Scholar
  21. Gai, F., McDonald, J. C., Anfinrud, P. A.: Pump-dump-probe spectroscopy of bacteriorhodosin: evidence for a near-IR excited state absorbance. J. Am. Chem. Soc. 119(16), 6201–6202 (1997)CrossRefGoogle Scholar
  22. Gundogdu, K., Stone, K. W., Turner, D. B., Nelson, K. A.: Multidimensional coherent spectro-scopy made easy. Chem. Phys. 341(1–3), 89–94 (2007)CrossRefGoogle Scholar
  23. Judson, R. S., Rabitz, H.: Teaching lasers to control molecules. Phys. Rev. Lett. 68(10), 1500–1503 (1992)CrossRefGoogle Scholar
  24. Hauer, J., Buckup, T., Motzkus, M.: Enhancement of molecular modes by electronically resonant multipulse excitation: further progress towards mode selective chemistry. J. Chem. Phys. 125(6), 061101 (2006a)CrossRefGoogle Scholar
  25. Hauer, J., Skenderovic, H., Kompa, K. L., Motzkus, M.: Enhancement of Raman modes by coherent control in beta-carotene. Chem. Phys. Lett. 421(4–6), 523–528 (2006b)CrossRefGoogle Scholar
  26. Hauer, J., Buckup, T., Motzkus, M.: Quantum control spectroscopy of vibrational modes: comparison of control scenarios for ground and excited states in beta-carotene. Chem. Phys. 350(1–3), 220–229 (2007a)Google Scholar
  27. Hauer, J., Buckup, T., Skenderovic, H., Kompa, K. L., Motzkus, M.: Enhancement of Raman modes in complex molecules by coherent control. Ultrafast Phenom. XV 88, 303–305 (2007b)CrossRefGoogle Scholar
  28. Hauer, J., Buckup, T., Motzkus, M.: Quantum control spectroscopy of vibrational modes: comparison of control scenarios for ground and excited states in beta-carotene. Chem. Phys. 350(1–3), 220–229 (2008)CrossRefGoogle Scholar
  29. Herek, J. L., Wohlleben, W., Cogdell, R. J., Zeidler, D., Motzkus, M.: Quantum control of the energy flow in light harvesting. Nature 417, 533–535 (2002)CrossRefGoogle Scholar
  30. Hornung, T., Meier, R., de Vivie-Riedle, R., Motzkus, M.: Coherent control of the molecular four-wave-mixing response by phase and amplitude shaped pulses. Chem. Phys. 267(1–3), 261–276 (2001)CrossRefGoogle Scholar
  31. Ikuta, M., Yabushita, A., Rondonuwu, F. S., Akahane, J., Koyama, Y., Kobayashi, T.: The 1Bu+ -> 3Ag- -> 1Bu- -> 2Ag- internal conversion in carotenoids following the energy-gap law identified by 5 fs spectroscopy. Chem. Phys. Lett. 422(1–3), 95–99 (2006)CrossRefGoogle Scholar
  32. Kosumi, D., Yanagi, K., Fujii, R., Hashimoto, H., Yoshizawa, M.: Conjugation length dependence of relaxation kinetics in beta-carotene homologs probed by femtosecond Kerr-gate fluorescence spectroscopy. Chem. Phys. Lett. 425(1–3), 66–70 (2006)CrossRefGoogle Scholar
  33. Larsen, D. S., Papagiannakis, E., van Stokkum, I. H. M., Vengris, M., Kennis, J. T. M., van Grondelle, R.: Excited state dynamics of beta-carotene explored with dispersed multi-pulse transient absorption. Chem. Phys. Lett. 381(5–6), 733–742 (2003)CrossRefGoogle Scholar
  34. Loring, R. F., Mukamel, S.: Selectivity in coherent transient Raman measurements of vibrational dephasing in liquids. J. Chem. Phys. 83(5), 2116–2128 (1985)CrossRefGoogle Scholar
  35. Lozovoy, V. V., Sarkisov, O. M., Vetchinkin, A. S., Umanskii, S. Y.: Coherent control of the molecular iodine vibrational dynamics by chirped femtosecond light pulses: theoretical simulation of the pump-probe experiment. Chem. Phys. 243(1–2), 97–114 (1999)CrossRefGoogle Scholar
  36. Mukamel, S., Yan, Y. J.: Manipulation of molecular motions using femtosecond pulse sequences. J. Phys. Chem. 95(3), 1015–1016 (1991)CrossRefGoogle Scholar
  37. Niedzwiedzki, D., Koscielecki, J. F., Cong, H., Sullivan, J. O., Gibson, G. N., Birge, R. R., Frank, H. A.: Ultrafast dynamics and excited state spectra of open-chain carotenoids at room and low temperatures. J. Phys. Chem. B 111(21), 5984–5998 (2007)CrossRefGoogle Scholar
  38. Polivka, T., Sundstrom, V.: Ultrafast dynamics of carotenoid excited states — from solution to natural and artificial systems. Chem. Rev. 104(4), 2021–2071 (2004)CrossRefGoogle Scholar
  39. Polli, D., Cerullo, G., Lanzani, G., De Silvestri, S., Yanagi, K., Hashimoto, H., Cogdell, R. J.: Conjugation length dependence of internal conversion in carotenoids: role of the intermediate state. Phys. Rev. Lett. 93(16), Art. Num. 163002 (2004)Google Scholar
  40. Prokhorenko, V. I., Nagy, A. M., Waschuk, S. A., Brown, L. S., Birge, R. R., Miller, R. J. D.: Coherent control of retinal isomerization in bacteriorhodopsin. Science 313(5791), 1257–1261 (2006)CrossRefGoogle Scholar
  41. Prokhorenko, V. I., Nagy, A. M., Brown, D. M., Miller, R. J. D.: On the mechanism of wek-field coherent control of retinal isomerization in bacteriorhodopsin. Chem. Phys. 341(1–3), 296–309 (2007)CrossRefGoogle Scholar
  42. Rabitz, H., deVivie-Riedle, R., Motzkus, M., Kompa, K.-L.: Chemistry — whither the future of controlling quantum phenomena. Science 288(5467), 824–828 (2000)CrossRefGoogle Scholar
  43. Sashima, T., Nagae, H., Kuki, M., Koyama, Y.: A new singlet-excited state of all-trans-spheroidene as detected by resonance-Raman excitation profiles. Chem. Phys. Lett. 299(2), 187–194 (1999)CrossRefGoogle Scholar
  44. Savolainen, J., Dijkhuizen, N., Fanciulli, R., Liddell, P. A., Gust, D., Moore, T. A., Moore, A. L., Hauer, J., Buckup, T., Motzkus, M., Herek, J. L.: Ultrafast energy transfer dynamics of a bioinspired dyad molecule. J. Phys. Chem. B 112(9), 2678–2685 (2008a)CrossRefGoogle Scholar
  45. Savolainen, J., Fanciulli, R., Dijkhuizen, N., Moore, A. L., Hauer, J., Buckup, T., Motzkus, M., Herek, J. L.: Controlling the efficiency of an artificial light-harvesting complex. Proc. Natl. Acad. Sci. USA 105(22), 7641–7646 (2008b)CrossRefGoogle Scholar
  46. Stobrawa, G., Hacker, M., Feurer, T., Zeidler, D., Motzkus, M., Reichel, F.: A new highresolution femtosecond pulse shaper. Appl. Phys. B 72(5), 627–630 (2001)Google Scholar
  47. Sugisaki, M., Yanagi, K., Cogdell, R. J., Hashimoto, H.: Unified explanation for linear and nonlinear optical responses in beta-carotene: a sub-20-fs degenerate four-wave mixing spectroscopic study. Phys. Rev. B 75(15), (2007)Google Scholar
  48. Tannor, D. J., Rice, S. A.: Coherent pulse sequence control of product formation in chemical reactions. Adv. Chem. Phys. 70, 441–523 (1988)CrossRefGoogle Scholar
  49. Tavan, P., Schulten, K.: The low-lying electronic excitations in long polyenes: a PPP-MRD-CL study. J. Chem. Phys. 85(11), 6602–6609 (1986)CrossRefGoogle Scholar
  50. Tian, P. F., Keusters, D., Suzaki, Y., Warren, W. S.: Femtosecond phase-coherent two-dimensional spectroscopy. Science 300(5625), 1553–1555 (2003)CrossRefGoogle Scholar
  51. Wagner, W., Li, C., Semmlow, J., Warren, W. S.: Rapid phase-cycled two-dimensional optical spectroscopy in fluorescence and transmission mode. Opt. Express 13(10), 3697 (2005)CrossRefGoogle Scholar
  52. Weiner, A. M., Leaird, D. E., Wiederrecht, G. P., Nelson, K. A.: Femtosecond pulse sequences used for optical manipulation of molecular motion. Science 247(4948), 1317–1319 (1990)CrossRefGoogle Scholar
  53. White, J. L., Pearson, B. J., Bucksbaum, P. H.: Extracting quantum dynamics from genetic learning algorithms through principal control analysis. J. Phys. B 37(24), L399–L405 (2004)CrossRefGoogle Scholar
  54. Wise, F. W., Rosker, M. J., Tang, C. L.: Oscillatory femtosecond relaxation of photoexcited organic molecules. J. Chem. Phys. 86(5), 2827–2832 (1987)CrossRefGoogle Scholar
  55. Wohlleben, W., Buckup, T., Hashimoto, H., Cogdell, R. J., Herek, J. L., Motzkus, M.: Pump-deplete-probe spectroscopy and the puzzle of carotenoid dark states. J. Phys. Chem. B 108(10), 3320–3325 (2004)CrossRefGoogle Scholar
  56. Wohlleben, W., Buckup, T., Herek, J. L., Motzkus, M.: Coherent control for spectroscopy and manipulation of biological dynamics. Chem. Phys. Chem. 6(5), 850–857 (2005)Google Scholar
  57. Wüthrich, K.: NMR of Proteins and Nucleic Acids. Wiley, New York (1986)Google Scholar
  58. Yan, Y. J., Mukamel, S.: Pulse shaping and coherent Raman spectroscopy in condensed phases. J. Chem. Phys. 94(2), 997–1005 (1991)CrossRefGoogle Scholar
  59. Yoshizawa, M., Aoki, H., Ue, M., Hashimoto, H.: Ultrafast relaxation kinetics of excited states in a series of mini- and macro-beta-carotenes. Phys. Rev. B 67(17), 174302 (2003)CrossRefGoogle Scholar
  60. Zeidler, D., Frey, S., Kompa, K.-L., Motzkus, M.: Evolutionary algorithms and their application to optimal control studies. Phys. Rev. A 64(2), 3421–3433 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Tiago Buckup
    • 1
  • Marcus Motzkus
    • 1
  • Jürgen Hauer
    • 1
    • 2
  1. 1.Physikalische ChemiePhilipps-Univertät MarburgMarburgGermany
  2. 2.Germany Institute for Physical ChemistryViennaAustria

Personalised recommendations