Sources and Occurrence of Cyanotoxins Worldwide

  • Miguel Pelaez
  • Maria G. Antoniou
  • Xuexiang He
  • Dionysios D. DionysiouEmail author
  • Armah A. de la Cruz
  • Katerina Tsimeli
  • Theodoros Triantis
  • Anastasia Hiskia
  • Triantafyllos Kaloudis
  • Christopher Williams
  • Mark Aubel
  • Andrew Chapman
  • Amanda Foss
  • Urooj Khan
  • Kevin E. O’Shea
  • Judy Westrick
Part of the Environmental Pollution book series (EPOL, volume 16)


The eutrophication of water resources, mainly attributed to antrophogenic activities such as sewage and agricultural runoffs, has led to a worldwide increase in the formation of cyanobacterial harmful algal blooms (Cyano-HABs). Cyano-HABs have the ability to produce and release toxic compounds, commonly known as cyanotoxins, which comprise a potent threat for human and animal health as well as negative economical impacts. This chapter presents an overview on the sources and occurrence of species of cyanobacteria and their association with the production of cyanotoxins throughout the world. The main bloom-forming cyanobacteria that have been detected include Microcystis, Cylindrospermopsis, Anabaena, Aphanizomenon, and Planktothrix. The main cyanotoxins related to these cyanobacteria are microcystins, cylindrospermopsin, anatoxin-a and saxitoxins.


Zebra Mussel Cyanobacterial Bloom Microcystis Aeruginosa Microcystin Concentration Cyanobacterial Toxin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



D. D. Dionysiou, K. E. O’Shea, C. Williams and J. Westrick acknowledge funding from a U.S. Environmental Protection Agency Grant (RD-83322301) for their work on cyanotoxins. M. G. Antoniou is grateful to the Rindsberg Memorial Fund of UC and the University Research Council of UC for a Summer Research Fellowship. J. Westrick thanks Annis Water Research Institute, Muskegon, MI for accommodating her research needs during her 2008-2009 sabbatical.


  1. Albay, M., Matthiensen, A., & Codd, G. A. (2005). Occurrence of toxic blue-green algae in the Kucukcekmece Lagoon (Istanbul, Turkey). Environmental Toxicology, 20, 277–284.CrossRefGoogle Scholar
  2. Amé, M. V., Diaz, M. P., & Wunderlin, D. A. (2003). Ocurrence of toxic cyanobacterial blooms in San Roque reservoir (Córdoba, Argentina): A field and chemometric study. Environmental Toxicology, 18, 192–201.CrossRefGoogle Scholar
  3. Aubel, M., D’aiuto, P., Chapman, A., Casamatta, D., Ketchen, S., Reich, A., et al. (2006). Blue-green algae in the St. Johns River, Florida. Lakeline, Summer, 40–45.Google Scholar
  4. Australian drinking water guidelines. Retrieved December 5, 2008, from
  5. Azevedo, S. M. F. O., Charmichael, W. W., Jochimsen, E. M., Rinehart, K. L., Lau, S., Shaw, G. R., et al. (2002). Human intoxication by microcystins during renal dialysis treatment in Caruaru-Brazil. Toxicology, 181–182, 441–446.CrossRefGoogle Scholar
  6. Ballot, A., Pflugmacher, S., Wiegand, C., Kotut, K., & Krienitz, L. (2003). Cyanobacterial toxins in lake Baringo, Kenya. Limnologica, 33, 2–9.Google Scholar
  7. Billam, M., Tang, L., Cai, Q., Mukhi, S., Guan, H., Wang, P., et al. (2006). Seasonal variations in the concentration of microcystin-LR in two lakes in western Texas, USA. Environmental Toxicology and Chemistry, 25(2), 349–355.CrossRefGoogle Scholar
  8. Blahova, L., Babica, P., Adamovsky, O., Kohoutek, J., Marsalek, B., & Blaha, L. (2008). Analyses of cyanobacterial toxins (microcystins, cylindrospermopsin) in the reservoirs of the Czech Republic and evaluation of health risks. Environmental Chemistry Letters, 6, 223–227.CrossRefGoogle Scholar
  9. Boaru, D. A., Dragos, N., Welker, M., Bauer, A., Nicoara, A., & Schirmer, K. (2006). Toxic potential of microcystin-containing cyanobacterial extracts from three Romanian freshwaters. Toxicon, 47, 925–932.CrossRefGoogle Scholar
  10. Bonilla, S., Villeneuve, V., & Vincent, W. F. (2005). Benthic and planktonic algal communities in a high Arctic lake: Pigment structure and contrastic responses to nutrient enrichment. Journal of Phycology, 41, 1120–1130.CrossRefGoogle Scholar
  11. Boyer, G. L. (2008). Cyanobacterial toxins in New York and the lower Great Lakes ecosystems. Advances in Experimental Medicine and Biology, 619, 151–165.CrossRefGoogle Scholar
  12. Branco, C. W. C., & Senna, P. A. C. (1996). Relations among heterotrophic bacteria, chlorophyll- a, total phytoplankton, total zooplankton and physical and chemical features in the Paranoa reservoir, Brasilia, Brazil. Hydrobiologia, 337, 171–181.CrossRefGoogle Scholar
  13. Brittain, S. M., Wang, J., Babcock-Jackson, L., Carmichael, W. W., Rinehart, K. L., & Culver, D. A. (2000). Isolation and characterization of microcystins, cyclic heptapeptide hepatoxin from a Lake Erie strain of Microcystis aeruginosa. Journal of Great Lakes Research, 26, 241–249.CrossRefGoogle Scholar
  14. Burch, M. D. (2008). Effective doses, guidelines & regulations. Advances in Experimental Medicine and Biology, 619, 831–853.CrossRefGoogle Scholar
  15. Carrasco, D., Moreno, E., Sanchis, D., Wormer, L., Paniagua, T., Del Cueto, A., et al. (2006). Cyanobacterial abudance and Microcystin occurrence in Mediterranean water reservoirs in Central Spain: Microcystins in the Madrid area. European Journal of Phycology, 41, 281–291.CrossRefGoogle Scholar
  16. Chorus, I. (2002). Cyanobacterial toxin research and its application in Germany: A review of the current status. Environmental Toxicology, 17, 358–360.CrossRefGoogle Scholar
  17. Chorus, I. (2005). Editorial and Summary. In I. Chorus (Ed.), Current approaches to cyanotoxin risk assessment, risk management and regulations in different countries (pp. 1–8). Berlin: Federal Environmental agency (Umweltbundesamt).Google Scholar
  18. Christoffersen, K. (2005). Denmark: Occurrence, monitoring and management of toxic cynobacteria. In I. Chorus (Ed.), Current approaches to cyanotoxin risk assessment, risk management and regulations in different countries (pp. 41–45). Berlin: Federal Environmental agency (Umweltbundesamt).Google Scholar
  19. Codd, G. A., Azevedo, S. M. F. O., Bagchi, S. N., Burch, M. D., Carmichael, W. W., Harding, W. R., et al. (2005a). CYANONET: A global network for Cyanobacterial Bloom and Toxin Risk Management. Initial situation assessment and recommendations. IHP-VI Technical Document in Hydrology N°76. UNESCO Working Series SC-2005/WS/55.Google Scholar
  20. Codd, G. A., Steffensen, G. A., Burch, M. D., & Baker, P. D. (1994). Toxic blooms of cyanobacteria in lake alexandrina, south australia-learning from history. Australian Journal of Marine & Freshwater Research, 45, 731–736.CrossRefGoogle Scholar
  21. Codd, G. A., Young, F. M., & Utkilen, H. C. (2005b). Europe: Cyanobacteria, cyanotoxins, their health significance and risk management. In G. A. Codd, S. M. F. O. Azevedo, S. N. Bagchi, M. D. Burch, W. W. Carmichael, W. R. Harding, et al. (Eds.), Cyanonet a global network for cyanobacterial bloom and toxin risk management. Initial situation assessment and recommendations (pp. 71–90). Paris: IHP Secretariat, Division of Water Sciences, UNESCO.Google Scholar
  22. Cook, C. M., Vardaka, E., & Lanaras, T. (2004). Toxic cyanobacteria in Greek freshwaters, 1987–2000: Occurrence, toxicity, and impacts in the Mediterranean region. Acta Hydrochimica et Hydrobiologica, 32, 107–124.CrossRefGoogle Scholar
  23. Davis, T. W., Berry, D. L., Boyer, G. L., & Gobler, C. J. (2008). The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic stains of Microcystis during cyanobacteria blooms. Harmful Algae 8:715–725.CrossRefGoogle Scholar
  24. De Leon, L., & Yunes, J. S. (2000). First report of a microcystin-containing bloom of the cyanobacterium microcystis aeruginosa in the La Plata River. South American Environmental Toxicology, 16(1), 110–112.Google Scholar
  25. Deblois, C. P., Aranda-Rodriguez, R., Giani, A., & Bird, D. F. (2008). Microcystin accumulation in liver and muscle of tilapia in two large Brazilian hydroelectric reservoirs. Toxicon, 51, 435–448.CrossRefGoogle Scholar
  26. Dejenie, T., Asmelash, T., Meester, L. D., Mulugeta, A., Gebrekidan, A., Risch, S., et al. (2008). Limnological and ecological characteristics of tropical highland reservoirs in Tigray, Northern Ethiopia. Hydrobiologia, 610, 193–209.CrossRefGoogle Scholar
  27. Dillenberg, H. O., & Dehnel, M. K. (1960). Toxic waterbloom in Saskatchewan, 1959. Canadian Medical Association Journal, 83, 1151–1154.Google Scholar
  28. Dyble, J., Fahnenstiel, F. L., Litaker, R. W., Millie, D. F., & Tester, P. A. (2008). Microcystin concentrations and genetic diversity of Microcystis in the lower Great Lakes. Environmental Toxicology, 23, 507–512.CrossRefGoogle Scholar
  29. El Herry, S., Fathalli, A., Rejeb, A. J.-B., & Bouaïcha, N. (2008). Seasonal occurrence and toxicity of Microcystis spp. And Oscillatioria tenuis in the Lebna Dam, Tunisia. Water Research, 42, 1263–1273.Google Scholar
  30. Falconer, I., Bartram, J., Chorus, I., Kuper-Goodman, T., Utkilen, H., Burch, M., et al. (2006). Safe levels and safe practices. In I. Chorus & J. Bartram (Eds.), Toxic cyanobacteria in water: A guide to their public health consequences monitoring and management (2nd ed.). London: St Edmundsbury Press.Google Scholar
  31. Florida Department of Health, Aquatic Toxins Program (2007/2008). Tallahassee, FL. Program Coordinators: Mr. Andrew Reich and Sharon Watkins.Google Scholar
  32. Francis, G. (1878). Poisonous Australian lake. Nature (London), 18(11), 12.Google Scholar
  33. Fristachi, A., Sinclair, J. L., Hall, S., et al. (2008). Occurrence of cyanobacterial harmful algal blooms workgroup report. In H. Kenneth Hudness (Ed.), Proceedings of the Interagency, International Symposium on Cyanobacterial harmful algal Blooms. Adv Exp Med, 619, 45–103.Google Scholar
  34. Fromme, H., Kohler, A., Krause, R., & Fuhrling, D. (2000). Occurrence of cyanobacterial toxins-microcystins and anatoxin-a-in Berlin water bodies with implications to human health and regulations. Environmental Toxicology, 15, 120–130.CrossRefGoogle Scholar
  35. Gaete, V., Canelo, E., Lagos, N., & Zambrano, F. (1994). Inhibitory effects of Microcystis Aeruginosa toxin on ion pumps of the gill of freswather fish. Toxicon, 32(1), 121–127.CrossRefGoogle Scholar
  36. Gkelis, S., Harjunpa, V., Lanaras, T., & Sivonen, K. (2005). Diversity of hepatotoxic microcystins and bioactive anabaenopeptins in cyanobacterial blooms from Greek freshwaters. Environmental Toxicology, 20, 249–256.CrossRefGoogle Scholar
  37. GreenWater Laboratories/CyanoLab. (2008). Palatka, Florida 32177. Project Managers: Mark Aubel and Amanda Foss.Google Scholar
  38. Griffiths, D. J., & Saker, M. L. (2003). The palm island mystery disease 20 years on: A review of research on the cyanotoxin cylindrospermopsin. Environmental Toxicology, 18(2), 78–93.CrossRefGoogle Scholar
  39. Haande, S., Ballot, A., Rohrlack, T., Fastner, J., Wiedner, C., & Edvardsen, B. (2007). Diversity of Microcystis aeruginosa isolates (Chroococcales, Cyanobacteria) from East-African water bodies. Archives of Microbiology, 188, 15–25.CrossRefGoogle Scholar
  40. Harada, K. I., & Tsuji, K. (1998). Persistence and decomposition of hepatotoxic microcystins produced by cyanobacteria in natural environment. Journal of Toxicology - Toxin Reviews, 17(3), 385–403.Google Scholar
  41. Hitzfeld, B. C., Lampert, C. S., Spaeth, N., Mountfort, D., Kaspar, H., & Dietrich, D. R. (2000). Toxin production in cyanobacterial mats from ponds on the McMurdo Ice shelf, Antarctica. Toxicon, 38, 1731–1748.CrossRefGoogle Scholar
  42. Hotto, A. M., Satchwell, M. F., & Boyer, G. L. (2007). Molecular characterization of potential microcystin-producing cyanobacteria in Lake Ontario embayments and nearshore waters. Applied and Environmental Microbiology, 73, 4570–4578.CrossRefGoogle Scholar
  43. Humpage, A. R., & Falconer, I. R. (2002). Oral toxicity of cylindrospermopsin: No observed adverse effect level determination in male swiss albino mine. Salisbury, South Australia, Australia: Co-operative research center for water quality and treatment.Google Scholar
  44. Ishizaka, J. (2003). Detection of red tide events in the Ariake sound, Japan. Proceedings of SPIE, 4892, 264–268.CrossRefGoogle Scholar
  45. Izaguirre, G., Jungblut, A. D., & Neilan, B. A. (2007). Benthic cyanobacteria (Oscillatoriaceae) that produce microcystin-LR, isolated from four reservoirs in southern California. Water Research, 41(2), 492–498.CrossRefGoogle Scholar
  46. Johnston, B. R., & Jacoby, J. M. (2003). Cyanobacterial toxicity and migration in a mesotrophic lake in western Washington, USA. Hydrobiologia, 495, 79–91.CrossRefGoogle Scholar
  47. Karlsson, K. M., Kankaanpää, H., Huttunen, M., & Meriluoto, J. (2005). First observation of microcystin-LR in pelagic cyanobacterial blooms in the northern Baltic Sea. Harmful Algae, 4, 163–166.CrossRefGoogle Scholar
  48. Kotut, K., Ballot, A., & Krienitz, L. (2006). Toxic cyanobacteria and their toxins in standing waters of Kenya: Implications for water resource use. Journal of water and health, 04(2), 233–245.Google Scholar
  49. Lake County Water Authority. (2005). The presence of toxin producing blue-green algae (cyanobacteriabacteria) and the identification and quantification of toxins in the Harris chain of lakes (pp. 35). Final Annual Report submitted by GreenWater Laboratories/CyanoLab to the Lake County Water Authority.Google Scholar
  50. Li, R., Wilhelm, S. W., Carmichael, W. W., & Watanabe, M. M. (2008). Polyphasic characterization of water bloom forming raphidiopsis species (cyanobacteria) from central china. Harmful Algae, 7(2), 146–153.CrossRefGoogle Scholar
  51. Lippy, E. C., & Erb, J. (1976). Gastrointestinal illness in Sewickley, PA. Journal of the American Water Works Association, 68, 606–610.Google Scholar
  52. Lugomela, C., Pratap, H. B., & Mgaya, Y. D. (2006). Cyanobacteria blooms - A possible cause of mass mortality of lesser flamingos in Lake Manyara and Lake Big Momela, Tanzania. Harmful Algae, 5, 534–541.CrossRefGoogle Scholar
  53. Magalhães, V. F., Marinho, M. M., Domingos, P., Oliveira, A. C., Costa, S. M., Azevedo, L. O., et al. (2003). Microcystins (cyanobacterial hepatotoxins) bioacumulation in fish and crustaceans from Sepetiba Bay (Brasil, RJ). Toxicon, 42, 289–295.CrossRefGoogle Scholar
  54. Makarewicz, J. C., Boyer, G. L., Guenther, W., Arnold, M., & Lewis, T. W. (2006). The occurrence of cyanotoxins in the nearshore and coastal embayments of Lake Ontario. Great Lakes Research Review, 7, 25–29.Google Scholar
  55. Masango, M., Myburgh, J., Botha, C., Labuschagne, L., & Naicker, D. (2008). A comparison of in vivo and in vitro assays to assess the toxicity of algal blooms. Water Research, 42, 3241–3248.CrossRefGoogle Scholar
  56. McDermott, C. M., Feola, R., & Plude, J. (1995). Detection of cyanobacterial toxins (microcystins) in waters of northeastern Wisconsin by a new immunoassay technique. Toxicon, 33(11), 1433–1442.CrossRefGoogle Scholar
  57. Mendoza-Vera, J. M., Kâ, S., Bouvy, M., & Pagano, M. (2008). Decline of Pseudodiaptomus hesser (Copepoda, Calanoida) in two water bodies located in the Senegal river hydrosystem (West Africa): Hypotheses and perspectives. Estuarine, Coastal and Shelf Science, 79, 740–750.CrossRefGoogle Scholar
  58. Messineo, V., Bogialli, S., Melchiorre, S., Sechi, N., Luglie, A., Casiddu, P., et al. (2009). Cyanobacterial toxins in Italian freshwaters. Limnologica 39(2), 95–106.Google Scholar
  59. Mohamed, Z. A., Carmichael, W. W., & Hussein, A. A. (2003). Estimation of microcystins in the freshwater fish Oreochromis niloticus in an Egyptian fish farm containing a Microcystis bloom. Inc. Environmental Toxicology, 18, 137–141.CrossRefGoogle Scholar
  60. Mohamed, Z. A., El-Sharouny, H. M., & Ali, W. S. (2007). Microcystin concentrations in the Nile river sediments and removal of microcystin-LR by sediments during batch experiments. Archives of Environmental Contamination and Toxicology, 52, 489–495.CrossRefGoogle Scholar
  61. Murphy, T. P., Irvine, K., Guo, J., Davies, J., Murkin, H., Charlton, M., et al. (2003). New microcystin concerns in the lower Great lakes. Water Quality Research Journal of Canada, 38(1), 127–140.Google Scholar
  62. Nasri, A.-B., Bouaïcha, N., & Fastner, J. (2004). First report of a microcystin-containing bloom of the cyanobacteria Microcystis spp. in lake Oubeira, Eastern Algeria. Archives of Environmental Contamination and Toxicology, 46, 197–202.Google Scholar
  63. Nasri, H., Herry, S. E., & Bouaïcha, N. (2008). First reported case of turtle deaths during a toxic Microcystis spp. Bloom in Lake Oubeira, Algeria. Ecotoxicology and Environmental Safety, 71, 535–544.Google Scholar
  64. Ndebele, M. R., & Magadza, C. H. D. (2006). The occurrence of microcystin-LR in Lake Chivero, Zimbabwe. Lakes & Reservoirs: Research and Management, 11, 57–62.CrossRefGoogle Scholar
  65. Obergikster, P. J., & Botha, A. M. (2007). Use of PCR based technologies for risk assessment of a winter cyanobacterial bloom in lake Midmar, South Africa. African Journal of Biotechnology, 6(15), 1794–1805.Google Scholar
  66. Oberholster, P. J., Botha, A.-M., & Ashton, P. J. (2009). The influence of a toxic cyanobacterial bloom and water hydrology on algal populations and macroinvertebrate abundance in the upper littoral zone of Lake Krugersdrift, South Africa. Ecotoxicology, 18, 34–46.CrossRefGoogle Scholar
  67. Okbah, M. A., & Hussein, N. R. (2006). Impact of Environmental conditions on the phytoplankton structure in Mediterranean sea lagoon, lake Burullus, Egypt. Water, Air, and Soil Pollution, 172, 129–150.CrossRefGoogle Scholar
  68. Recknagel, F., Van Ginkel, C., Cao, H., Cetin, L., & Zhang, B. (2008). Generic limnological models on the touchstone: Testing the lake simulation library SALMO-OO and the rule-based microcystis agent for warm-monomictic hypertrophic lakes in South Africa. Ecological Modeling, 215, 144–158.CrossRefGoogle Scholar
  69. Repavich, W. M., Sonzogni, W. C., Standridge, J. H., Wedepohl, R. E., & Meisner, L. F. (1990). Cyanobacteria (blue-green algae) in Wisconsin waters: Acute and chronic toxicity. Water Research, 24, 225–231.CrossRefGoogle Scholar
  70. Rinta-Kanto, J. M., Ouellette, A. J. A., Boyer, G. L., Twiss, M. R., Bridgemen, T. B., & Wilhelm, S. W. (2005). Quantification of toxic Microcystis spp during the 2003 and 2004 blooms in western Lake Erie using quantitative real-time PCR. Environmental Science and Technology, 39, 4198–4205.CrossRefGoogle Scholar
  71. Rinta-Kanto, J. M., & Wilhelm, S. W. (2006). Diversity of microcystin-producing cyanobacteria in spatially isolated region of lake Erie. Applied and Environmental Microbiology, 72, 5083–5085.CrossRefGoogle Scholar
  72. Rolland, A., Bird, D. F., & Giani, A. (2005). Seasonal changes in composition of the cyanobacterial community and the occurrence of hepatotoxic blooms in the eastern townships, Quebec, Canada. Journal of Plankton Research, 27(7), 683–694.CrossRefGoogle Scholar
  73. Rucker, J., Stuken, A., Nixdorf, B., Fastner, J., Chorus, I., & Wiedner, C. (2007). Concentrations of particulate and dissolved cylindrospermopsin in 21 Aphanizomenon-dominated temperate lakes. Toxicon, 50, 800–809.CrossRefGoogle Scholar
  74. Ruibal Conti, A. L., Guerrero, J. M., & Regueira, J. M. (2005). Levels of microcystins in two Argentinean reservoirs used for water supply and recreation: Differences in the implementation of safe levels. Environmental Toxicology, 20(3), 263–269.CrossRefGoogle Scholar
  75. Seki, H., Takahashi, M., Hara, Y., & Ichimura, S. (1980). Dynamics of dissolved oxygen during algal bloom in lake Kasumigaura, Japan. Water Research, 14(2), 179–183.CrossRefGoogle Scholar
  76. Sinclair, J. L., Hall, S., Berkman, J. A., Boyer, G., Burkholder, J., Burns, J., et al. (2008). Occurrence of cyanobacterial harmful algal blooms workgroup report. Advances in Experimental Medicine and Biology, 619, 45–103.CrossRefGoogle Scholar
  77. Sinclair, J., Southwell, B., & Westrick, J. (2005). Preliminary occurrence study of algal toxins in source and finished waters. Society for Risk Analysis Annual Meeting, Orlando, FL, USA, 4–7 December 2005.Google Scholar
  78. Spoof, L., Vesterkvist, P., Lindholm, T., & Meriluoto, J. (2003). Screening for cyanobacterial hepatotoxins, microcystins and nodularin in environmental water samples by reversed-phase liquid chromatography-electrospray ionisation mass spectrometry. Journal of Chromatography A, 1020, 105–119.CrossRefGoogle Scholar
  79. St. Johns River Water Management District. Lower St. Johns River Basin, Division of Environmental Sciences. (2008). Palatka FL. 32178. Project Manager: J. Hendrickson.Google Scholar
  80. Tang, D., Kester, D. R., Ni, I.-H., Qi, Y., & Kawamura, H. (2003). In situ and satellite observations of a harmful algal bloom and water condition at the pearl river estuary in late autumn 1998. Harmful Algae, 2(2), 89–99.Google Scholar
  81. Tsimeli, K., Triantis, T., Kaloudis, T., & Hiskia, A. (2008, October). Development of a new method for the determination of microcystins and nodularin in surface and drinking water by LC-MS/MS. Paper presented at the 5th European Conference on Pesticides and Related Organic Micropollutants in the Environment & 11th Symposium on Chemistry and Fate of Modern Pesticides, Marseille, France.Google Scholar
  82. Tsuji, K., Setsuda, S., Watanuki, T., Kondo, F., Nakazawa, H., Suzuki, M., et al. (1996). Microcystin levels during 1992–95 for lakes Sagarni and Tsukui-Japan. Natural Toxins, 4(4), 189–194.CrossRefGoogle Scholar
  83. Vanderploeg, H. A., Liebig, J. R., Carmichael, W. W., Agy, M. A., Johengen, T. H., Fahnenstiel, G. L., et al. (2001). Zebra mussel (Dreissena polymorpha) selective filtration promoted toxic Microcystis blooms in Saginaw Bay (Lake Huron) and lake Erie. Canadian Journal of Fisheries and Aquatic Sciences, 58, 1208–1221.CrossRefGoogle Scholar
  84. Vasconcelos, V. M., Sivonen, K., Evans, W. R., Carmichael, W. W., & Namikoshi, M. (1996). Hepatotoxic microcystin diversity in cyanobacterial blooms collected in portuguese freshwaters. Water Research, 30, 2377–2384.CrossRefGoogle Scholar
  85. Veldee, M. V. (1931). An epidemiological study of suspected waterborne gastroenteritis. American Journal of Public Health, 21, 1227–1235.CrossRefGoogle Scholar
  86. Vidal, L., & Kruk, C. (2008). Cylindrospermopsis raciborskii (Cyanobacteria) extends its distribution to latitude 34°53’S: Taxonomical and ecological features in Uruguayan eutrophic lakes. PANAMJAS, 3(2), 142–151.Google Scholar
  87. Vincent, W. F. (2000). Cyanobacterial dominance in the polar regions. In W. Potts (Ed.), Cyanobacteria: Their diversity in time and space (pp. 321–338). Dordrecht: Kluwer.Google Scholar
  88. Watson, S. B., Ridal, J., & Boyer, G. L. (2008). Taste and odour and cyanobacterial toxins: impairment, prediction, and management in the Great Lakes. Canadian Journal of Fisheries and Aquatic Sciences, 65, 1779–1796.CrossRefGoogle Scholar
  89. Wei, C., Bao, S., Zhu, X., & Huang, X. (2008). Spatio-temporal variations of the bacterioplankton community composition in Chaohu lake, China. Progress in Natural Science, 18(9), 1115–1122.CrossRefGoogle Scholar
  90. Willame, R., Jurczak, T., Iffly, J. F., Kull, T., Meriluoto, J., & Hoffmann, L. (2005). Distribution of hepatotoxic cyanobacterial blooms in Belgium and Luxembourg. Hydrobiologia, 551, 99–117.CrossRefGoogle Scholar
  91. Williams, C. D., Aubel, M. T., Chapman, A. D., & Daiuto, P. E. (2007). Identification of cyanoabcterial in Florida’s freshwater systems. Lake and Reservoir Management, 23, 144–152.CrossRefGoogle Scholar
  92. Williams, C., Burns, J., Chapman, A., Flewelling, L., Pawlowicz, M., & Carmichael, W. (2001). Assessment of cyanotoxins in Florida’s lakes, reservoirs and rivers (pp. 101). Final Report submitted by the St. Johns River Water Management District to the Florida Harmful Algal Bloom Task Force.Google Scholar
  93. Williams, C., Chapman, A., Burns, J., Pawlowicz, M., & Carmichael, W. (2006). Assessment of cyanotoxins in Florida’s surface waters and associated drinking water resources (pp. 89). Final Report submitted by the St. Johns River Water Management District to the Florida Harmful Algal Bloom Task Force.Google Scholar
  94. Wilson, A. E., Gossiaux, D. C., Hook, T. O., Berry, J. P., Landrum, P. F., Dyble, J., et al. (2008). Evaluation of the human health threat associated with the hepatoxin microcystin in the muscle and liver tissues of yellow perch (Perca flavescens). Canadian Journal of Fisheries and Aquatic Sciences, 65, 1487–1497.CrossRefGoogle Scholar
  95. World Health Organization. (1998). Guidelines for drinking-water quality: Second edition, addendum to volume 2, health criteria and other supporting information. Geneva: World Health Organization.Google Scholar
  96. Wu Wu, R., & Ma, Y. (2008). Analysis on spatial and temporal distribution and cause of red tides over past 20 years in South China sea. Haiyang Huanjing Kexue, 27(1), 30–32.Google Scholar
  97. Xie, Y., Xiong, Z., Xing, G., Yan, X., Shi, S., Sun, G., et al. (2008). Source of nitrogen in wet deposition to a rice agroecosystem at Tai lake region. Atmospheric Environment, 42(21), 5182–5192.CrossRefGoogle Scholar
  98. Yardley, J. (2007). China vows to clean up polluted lake. Retrieved December 5, 2008, from
  99. Yilmaz, M., Phlips, E. J., Szabo, N. J., & Badylak, S. (2008). A comparative study of Florida strains of Cylindrospermopsis and Aphanizomenon for cylindrospermopsin production. Toxicon, 51, 130–139.CrossRefGoogle Scholar
  100. Yu, S., Zhao, N., & Zi, X. (2001). The relationship between cyanotoxin (microcystin, MC) in pond-ditch water and primary liver cancer in china. Chinese Journal of Oncology, 23(2), 96–99.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Miguel Pelaez
    • 1
  • Maria G. Antoniou
    • 1
  • Xuexiang He
    • 1
  • Dionysios D. Dionysiou
    • 1
    Email author
  • Armah A. de la Cruz
    • 2
  • Katerina Tsimeli
    • 3
  • Theodoros Triantis
    • 3
  • Anastasia Hiskia
    • 3
  • Triantafyllos Kaloudis
    • 4
  • Christopher Williams
    • 5
  • Mark Aubel
    • 5
  • Andrew Chapman
    • 5
  • Amanda Foss
    • 5
  • Urooj Khan
    • 6
  • Kevin E. O’Shea
    • 6
  • Judy Westrick
    • 7
  1. 1.Department of Civil and Environmental EngineeringUniversity of CincinnatiCincinnatiUSA
  2. 2.Office of Research and DevelopmentU.S. Environmental Protection AgencyCincinnatiUSA
  3. 3.Laboratory of Catalytic - Photocatalytic Processes (Solar Energy – Environment)National Center of Scientific Research “Demokritos”AthensGreece
  4. 4.Organic Micropollutants LaboratoryAthens Water Supply and Sewerage Company (EYDAP SA)AthensGreece
  5. 5.GreenWater Laboratories/CyanoLabPalatkaUSA
  6. 6.Department of Chemistry and BiochemistryFlorida International UniversityMiamiUSA
  7. 7.Department of ChemistryLake Superior State UniversityMarieUSA

Personalised recommendations