The Challenge of the Identification and Quantification of Transformation Products in the Aquatic Environment Using High Resolution Mass Spectrometry

  • Juliane Hollender
  • Heinz Singer
  • Dolores Hernando
  • Tina Kosjek
  • Ester Heath
Part of the Environmental Pollution book series (EPOL, volume 16)


The environment is contaminated by a number of micropollutants and their degradation products, many of which still remain undetected. Nowadays, several European regulations require the inclusion of transformation products in environmental risk assessment and monitoring. In the last decade, intense efforts have been taken to recognize the identity, quantity, and toxicity of unknown transformation products. Liquid chromatography combined with mass spectrometry has become a key technique for environmental analysis, now allowing the development of screening, identification, confirmatory and quantitative methods for the trace analysis of polar compounds in complex environmental matrices. The combination of modern technologies comprising high resolution, high mass accuracy and mass fragmentation enables the identification of compounds without having the authentic standards or even the detection of unknown analytes. However, a reliable confirmation of proposed structures using NMR spectroscopy or available standards is still desirable. This chapter presents new analytical strategies to identify and quantify transformation products generated by human metabolism, microbial degradation, or other environmental breakdown processes. Various hyphenated mass spectrometric techniques used for structure elucidation, such as liquid chromatography coupled to time-of-flight mass spectrometry, quadrupole-time-of-flight and linear ion trap-Orbitrap hybrid mass spectrometry are presented on three case studies of pharmaceutical and pesticide transformation products in environmental matrices, such as wastewater and groundwater.


Transformation Product Select Reaction Monitoring High Mass Accuracy Biotransformation Product Human Metabolite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Barceló, D., & Petrovic´, M. (2007). Challenges and achievements of LC-MS in environmental analysis: 25 years on. Trends in Analytical Chemistry, 26, 2–11.CrossRefGoogle Scholar
  2. Bendz, D., Paxéus, N. A., Ginn, T. R., & Loge, F. J. (2005). Occurrence and fate of pharmaceutically active compounds in the environment, a case study: Höje River in Sweden. Journal of Hazardous Materials, 122, 195–204.CrossRefGoogle Scholar
  3. Boxall, A. B. A., Sinclair, C. J., Fenner, K., Kolpin, D., & Maud, S. J. (2004). When synthetic chemicals degrade in the environment. Environmental Science and Technology, 38, 368A-375A.CrossRefGoogle Scholar
  4. Bueno, M. J. M., Aguera, A., Gomez, M. J., Hernando, M. D., Garcia-Reyes, J. F., & Fernandez-Alba, A. R. (2007). Application of liquid chromatography/quadrupole-linear ion trap mass spectrometry and time-of-flight mass spectrometry to the determination of pharmaceuticals and related contaminants in wastewater. Analytical Chemistry, 79, 9372–9384.CrossRefGoogle Scholar
  5. Buser, H.-R., Poiger, T., & Muller, M. D. (1999). Occurrence and environmental behavior of the chiral pharmaceutical drug ibuprofen in surface waters and in wastewater. Environmental Science and Technology, 33, 2529–2535.CrossRefGoogle Scholar
  6. Campbell, J. M., Collings, B. A., & Douglas, D. J. (1998). A new linear ion trap time-of-flight system. Rapid Communications in Mass Spectrometry, 12, 1463–1474.CrossRefGoogle Scholar
  7. Chiron, S., Fernandez-Alba, A. R., & Rodriguez, A. (1997). Pesticide chemical oxidation an analytical approach. Trends in Analytical Chemistry, 15, 518–527.CrossRefGoogle Scholar
  8. D’Ascenzo, G., Di Corcia, A., Gentili, A., Mancini, R., Mastropasqua, R., Nazzari, M., et al. (2003). Fate of natural estrogen conjugates in municipal sewage transport and treatment facilities. Science of the Total Environment, 302, 199–209.CrossRefGoogle Scholar
  9. Drinking Water Directive. (1998). Council Directive 98/83/EC on the quality of water intended for human consumption. Google Scholar
  10. Durand, S., Legeret, B., Martin, A. S., Sancelme, M., Delort, A. M., Besse-Hoggan, P., et al. (2006). Biotransformation of the triketone herbicide mesotrione by a Bacillus strain. Metabolite profiling using liquid chromatography/electrospray ionization quadrupole time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry, 20, 2603–2613.Google Scholar
  11. Eichhorn, P., Ferguson, L., Pérez, S., & Aga, D. S. (2005). Application of ion trap-MS with H/D exchange and QqTOF-MS in the identification of microbial degradates of trimethoprim in nitrifying activated sludge. Analytical Chemistry, 77, 4176–4184.CrossRefGoogle Scholar
  12. EU DG of health and consumer protection, Plant Protection Products. (2006). Existing active substances decisions and review reports. Health and Protection Consumer DG. From
  13. European Directive. Concerning the placing of plant protection products on the market. 91/414/EEC (1991). OJ L 230, ISSN 0378 6978.Google Scholar
  14. European Guidance Document on the assessment of the relevance of metabolites in groundwater of substances regulated under council directive 91/414/EEC. (2003). Health and Consumer Protection Directorate-General, Sanco/221/2000.Google Scholar
  15. European Medicines Agency (EMEA). (2006). Guideline to the environmental risk assessment of medicinal products for human use. Committee for Medicinal Products for Human Use, EMEA/SWP/4447/00.Google Scholar
  16. Freed, A. L., Kale, U., Ando, H., Rossi, D. T., & Kingsmill, C. A. (2004). Improving the detection of degradants and impurities in pharmaceutical drug products by applying mass spectral and chromatographic searching. Journal of Pharmaceutical and Biomedical Analysis, 35, 727–738.CrossRefGoogle Scholar
  17. Göbel, A., Thomsen, A., McArdell, C. S., Joss, A., & Giger, W. (2005). Occurrence and sorption behavior of sulfonamides, macrolides, and trimethoprim in activated sludge treatment. Environmental Science and Technology, 39, 3981–3989.CrossRefGoogle Scholar
  18. Gomez, M. J., Sirtori, C., Mezcua, M., Fernandez-Alba, A. R., & Aguera, A. (2008). Photodegradation study of three dipyrone metabolites in various water systems: Identification and toxicity of their photodegradation products. Water Research, 42, 2698–2706.CrossRefGoogle Scholar
  19. Hanke, I., Singer, H., McArdell, C. S., Brennwald, M., Traber, D., Muralt, R., et al. (2007). Arzneimittel und Pestizide im Grundwasser. GWA - Gas und Wasserwirtschaft, 3, 187–196.Google Scholar
  20. Hernández, F., Ibá˜nez, M., Pozo, Ó. J., & Sancho, J. V. (2008). Investigating the presence of pesticide transformation products in water by using liquid chromatography-mass spectrometry with different mass analyzers. Journal of Mass Spectrometry, 43, 173–184.CrossRefGoogle Scholar
  21. Hernández, F., Ibánez, M., Sancho, J. V., & Pozo, O. J. (2004). Comparison of different mass spectrometric techniques combined with liquid chromatography for confirmation of 21 pesticides in environmental water based on the use of identification points. Analytical Chemistry, 76, 4349–4357.CrossRefGoogle Scholar
  22. Hernández, F., Pozo, Ó. J., Sancho, J. V., López, F. J., Marín, J. M., & Ibánez, M. (2005). Strategies for quantification and confirmation of multi-class polar pesticides and transformation products in water by LC-MS using triple quadrupole and hybrid quadrupole time-of-flight analyzers. Trends in Analytical Chemistry, 24, 596–612.CrossRefGoogle Scholar
  23. Hernando, M. D., Agüera, A., & Fernández-Alba, A. R. (2007a). LC-MS analysis and environmental risk of lipid regulators. Analytical and Bioanalytical Chemistry, 387, 1269–1285CrossRefGoogle Scholar
  24. Hernando, M. D., Gómez, M. J., Agüera, A., & Fernández-Alba, A. (2007b). LC-MS analysis of basic pharmaceuticals (beta-blockers and anti-ulcer agents) in wastewater and surface water. Trends in Analytical Chemistry, 26, 581–594.CrossRefGoogle Scholar
  25. Hogenboom, A. C., Niessen, W. M. A., & Brinkman, U. A. T. (1999). On-line solid-phase extraction-short-column liquid chromatography combined with various tandem mass spectrometric scanning strategies for the rapid study of transformation of pesticides in surface water. Journal of Chromatography A, 841, 33–44.CrossRefGoogle Scholar
  26. Hu, Q., Noll, R. J., Li, H., Makarov, A., Hardman, M., & Cooks, R. G. T. (2005). The Orbitrap: A new mass spectrometer. Journal of Mass Spectrometry, 40, 430–443.CrossRefGoogle Scholar
  27. Hummel, D., Löffler, D., Fink, G., & Ternes, T. A. (2006). Simultaneous determination of psychoactive drugs and their metabolites in aqueous matrices by liquid chromatography mass spectrometry. Environmental Science and Technology, 40, 7321–7328.CrossRefGoogle Scholar
  28. Ibanez, M., Sancho, J. V., Pozo, O. J., & Hernandez, F. (2004). Use of quadrupole time-of-flight mass spectrometry in environmental analysis: elucidation of transformation products of triazine herbicides in water after UV exposure. Analytical Chemistry, 76, 1328–1335.CrossRefGoogle Scholar
  29. Ibanez, M., Sancho, J. V., Pozo, O. J., Niessen, W., & Hernandez, F. (2005). Use of quadrupole time-of-flight mass spectrometry in the elucidation of unknown compounds present in environmental water. Rapid Communications in Mass Spectrometry, 19, 169–178.CrossRefGoogle Scholar
  30. Kern, S., Fenner, F., Singer, H. P., Schwarzenbach, R.P., & Hollender, J. (2009). Identification of transformation products of organic contaminants in natural waters by computer-aided prediction and high-resolution mass spectrometry. Environmental Science and Technology, 43, 7039–7046.CrossRefGoogle Scholar
  31. Kolpin, D. W., Kalkhoff, S. J., Goolsby, D. A., Sneck-Fahrer, D. A., & Thurman, E. M. (1997). Occurrence of selected herbicides and herbicide degradation products in Iowa’s Ground Water, 1995. Ground Water, 35, 679–688.CrossRefGoogle Scholar
  32. Kolpin, D. W., Schnoebelen, D. J., & Thurman, E. M. (2004). Degradates provide insight to spatial and temporal trends of herbicides in ground water. Ground Water, 42, 601–608.CrossRefGoogle Scholar
  33. Kosjek, T., Heath, E., Petrovic´, M., & Barceló, D. (2007). Mass spectrometry for identifying pharmaceutical biotransformation products in the environment. Trends in Analytical Chemistry, 26, 1076–1085.CrossRefGoogle Scholar
  34. Kosjek, T., Žigon, D., Kralj, B., & Heath, E. (2008). The use of quadrupole-time-of-flight mass spectrometer for the elucidation of diclofenac biotransformation products in wastewater. Journal of Chromatography A, 1215, 57–63.CrossRefGoogle Scholar
  35. Krauss, M., & Hollender, J. (2008). Analysis of nitrosamines in wastewater: Exploring the trace level quantification capabilities of a hybrid linear ion trap/orbitrap mass spectrometer. Analytical Chemistry, 80, 834–842.CrossRefGoogle Scholar
  36. Lacorte, S., & Fernandez-Alba, A. (2006). Time of flight mass spectrometry applied to the liquid chromatographic analysis of pesticides in water and food. Mass Spectrometry Reviews, 25, 866–880.CrossRefGoogle Scholar
  37. Längin, A., Alexy, R., König, A., & Kümmerer, K. (2009). Deactivation and transformation products in biodegradability testing of ss-lactams amoxicillin and piperacillin. Chemosphere, 75, 347–354.CrossRefGoogle Scholar
  38. Levsen, K., Preiss, A., & Godejohann, M. (2000). Application of high-performance liquid chromatography coupled to nuclear magnetic resonance and high-performance liquid chromatography coupled to mass spectrometry to complex environmental samples. Trends in Analytical Chemistry, 19, 27–48.CrossRefGoogle Scholar
  39. Makarov, A., Denisov, E., Kholomeev, A., Balschun, W., Lange, O., Strupat, K., et al. (2006). Performance evaluation of a hybrid linear ion trap/orbitrap mass spectrometer. Analytical Chemistry, 78, 2113–2120.CrossRefGoogle Scholar
  40. Miao, X.-S., Yang, J.-J., & Metcalfe, C. D. (2005). Carbamazepine and its metabolites in wastewater and in biosolids in a municipal wastewater treatment plant. Environmental Science and Technology, 39, 469–7475.CrossRefGoogle Scholar
  41. Pérez, S., Eichhorn, P., & Barceló, D. (2007). Structural characterization of photodegradation products of enalapril and its metabolite enalaprilat obtained under simulated environmental conditions by hybrid quadrupole-linear ion trap-MS and quadrupole-time-of-flight-MS. Analytical Chemistry, 79, 8293–8300.CrossRefGoogle Scholar
  42. Peterman, S. M., Duczak, N., Jr., Kalgutkar, A. S., Lame, M. E., & Soglia, J. R. (2006). Application of a linear ion trap/Orbitrap mass spectrometer in metabolite characterization studies: examination of the human liver microsomal Metabolism of the non-tricyclic anti-depressant nefazodone using data-dependent accurate mass measurements. Journal of the American Society for Mass Spectrometry, 17, 363–375.CrossRefGoogle Scholar
  43. Petrovic´, M., & Barceló, D. (2006). Application of liquid chromatography/quadrupole time-of-flight mass spectrometry (LC-QqTOF-MS) in the environmental analysis. Journal of Mass Spectrometry, 41, 1259–1267.CrossRefGoogle Scholar
  44. Petrovic´, M., & Barceló, D. (2007). LC-MS for identifying photodegradation products of pharmaceuticals in the environment. Trends in Analytical Chemistry, 26, 486–493.CrossRefGoogle Scholar
  45. Petrovic´, M., Gros, M., & Barceló, D. (2006). Multi-residue analysis of pharmaceuticals in wastewater by ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry. Journal of Chromatography A, 1124, 68–81.CrossRefGoogle Scholar
  46. Reineke, A., Preiss, M., Elend, M., & Hollender, J. (2008). Detection of methylquinoline transformation products in microcosm experiments and in tar oil contaminated groundwater using LC-NMR. Chemosphere, 70, 2118–2126.CrossRefGoogle Scholar
  47. Roberts, T., & Hutson, D. (2002). Metabolic pathways of agrochemicals on CD-ROM. Cambridge: The Royal Society of Chemistry.Google Scholar
  48. Ruan, Q., Peterman, S., Szewc, M. A., Ma, L., Cui, D., Humphreys, G. W., et al. (2008). An integrated method for metabolite detection and identification using a linear ion trap/Orbitrap mass spectrometer and multiple data processing techniques: application to indinavir metabolite detection. Journal of Mass Spectrometry, 43, 251–261.CrossRefGoogle Scholar
  49. Thurman, E. M., Ferrer, I., Zweigenbaum, J. A., García-Reyes, J. F., Woodman, M., & Fernández-Alba, A. R. (2005). Discovering metabolites of post-harvest fungicides in citrus with liquid chromatography/time-of-flight mass spectrometry and ion trap tandem mass spectrometry. Journal of Chromatography A, 1082, 71–80.CrossRefGoogle Scholar
  50. Van Bocxlaer, J. F., Casteele, S. R. V., Van Poucke, C. J., & Van Peteghem, C. H. (2005). Confirmation of the identity of residues using quadrupole time-of-flight mass spectrometry. Analytica Chimica Acta, 529, 65–73.CrossRefGoogle Scholar
  51. Weber, W. H., Seitz, W., Schulz, W., & Wagener, H.-A. (2007). Detection of the metabolites desphenyl-chloridazon and methyldesphenyl-chloridazon in surface water, groundwater and drinking water. Vom Wasser, 105, 7–14.Google Scholar
  52. Zuehlke, S., Duennbier, U., & Heberer, T. (2004). Determination of polar drug residues in sewage and surface water applying liquid chromatography-tandem mass spectrometry. Analytical Chemistry, 76, 6548–6554.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Juliane Hollender
    • 1
  • Heinz Singer
    • 1
  • Dolores Hernando
    • 2
    • 3
  • Tina Kosjek
    • 4
  • Ester Heath
    • 4
  1. 1.EawagSwiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
  2. 2.National Reference Centre for Persistent Organic Pollutants and Spanish REACH Reference Centre – University of AlcaláMadridSpain
  3. 3.University of AlmeriaAlmeriaSpain
  4. 4.Jožef Stefan InstituteLjubljanaSlovenia

Personalised recommendations