Advertisement

Structure and Function of Histone H2AX

  • David Miguel Susano Pinto
  • Andrew Flaus
Chapter
Part of the Subcellular Biochemistry book series (SCBI, volume 50)

Abstract

Histone H2AX is a histone variant found in almost all eukaryotes. It makes a central contribution to genome stability through its role in the signaling of DNA damage events and by acting as a foundation for the assembly of repair foci. The H2AX protein sequence is highly similar and in some cases overlapping with replication-dependent canonical H2A, yet the H2AX gene and protein structures exhibit a number of features specific to the role of this histone in DNA repair. The most well known of these is a specific serine at the extreme C-terminus of H2AX which is phosphorylated by Phosphoinositide-3-Kinase-related protein Kinases (PIKKs) to generate the γH2AX mark. However, recent studies have demonstrated that phosphorylation, ubiquitylation and other post-translational modifications are also crucial for function. H2AX transcript properties suggest a capability to respond to damage events. Furthermore, the biochemical properties of H2AX protein within the nucleosome structure and its distribution within chromatin also point to features linked to its role in the DNA damage response. In particular, the theoretical inter-nucleosomal spacing of H2AX and the potential implications of amino acid residues distinguishing H2AX from canonical H2A in structure and dynamics are considered in detail. This review summarises current understanding of H2AX from a structure–function perspective.

Keywords

Histone H2AX Structure–function Chromatin structure DSB DNA repair 

Abbreviations

DSB

double strand break

DDR

DNA damage response

HDE

histone downstream element

HR

homologous recombination

IR

ionising radiation

NHEJ

non-homologous end joining

PIKK

phosphoinositide-3-kinase-related protein kinase

PTM

post-translation modification

SHL

superhelical location

SLBP

stem–loop binding protein

snRNA

small nuclear RNA

TSS

transcription start site

Notes

Acknowledgements

We thank Prof. Cathal Seoighe for assistance with calculations of random H2AX distribution, Prof. Noel Lowndes for his input and Dr. Kevin Roche for helpful discussions. We gratefully acknowledge the support of Science Foundation Ireland and Health Research Board of Ireland for supporting work in our laboratory. DMSP acknowledges the support of the Portuguese Foundation for Science and Technology (FCT).

References

  1. Adams, M. M., Wang, B., Xia, Z., Morales, J. C., Lu, X., Donehower, L. A., Bochar, D. A. and Elledge, S. J., and Carpenter, P. B. (2005) 53BP1 oligomerization is independent of its methylation by PRMT1. Cell Cycle, 4(12), 1854–1861.CrossRefPubMedGoogle Scholar
  2. Aihara, H., Nakagawa, T., Yasui, K., Ohta, T., Hirose, S., Dhomae, N., Takio, K., Kaneko, M., Takeshima, Y., Muramatsu, M., Ito, T. (2004) Nucleosomal histone kinase-1 phosphorylates H2A Thr 119 during mitosis in the early Drosophila embryo. Genes Dev., 18, 877–888.CrossRefPubMedGoogle Scholar
  3. Ausió, J. (2006) Histone variants-the structure behind the function. Brief Funct Genomic Proteomic, 5(3), 228–243.CrossRefPubMedGoogle Scholar
  4. Ayoub, N., Jeyasekharan, A. D., Bernal, J. A., and Venkitaraman, A. R. (2008) HP1-beta mobilization promotes chromatin changes that initiate the DNA damage response. Nature 453, 682–686.CrossRefPubMedGoogle Scholar
  5. Bakkenist, C. J. and Kastan, M. B. (2003) DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421, 499–506.CrossRefPubMedGoogle Scholar
  6. Bassing, C. H. and Alt, F. W. (2004) H2AX may function as an anchor to hold broken chromosomal DNA ends in close proximity. Cell Cycle, 3(2), 149–153.PubMedGoogle Scholar
  7. Bewersdorf, J., Bennett, B. T., and Knight, K. L. (2006) H2AX chromatin structures and their response to DNA damage revealed by 4Pi microscopy. PNAS, 103(48), 18137–18142.CrossRefPubMedGoogle Scholar
  8. Bonenfant, D., Coulot, M., Towbin, H., Schindler, P. and van Oostrum, J. (2006) Characterization of histone H2A and H2B variants and their post-translational modifications by mass spectrometry. Mol Cell Proteomics, 5(3), 541–552.PubMedGoogle Scholar
  9. Botuyan, M. V., Lee, J., Ward, I. M., Kim, J.-E., Thompson, J. R., Chen, J., and Mer, G. (2006) Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair. Cell, 127, 1361–1373.CrossRefPubMedGoogle Scholar
  10. Burma, S. and Chen, D. J. (2004) Role of DNA-PK in the cellular response to DNA double-strand breaks. DNA Repair, 3, 909–918.CrossRefPubMedGoogle Scholar
  11. Celeste, A., Difilippantonio, S., Difilippantonio, M. J., Fernandez-Capetillo, O., Pilch, D. R., Sedelnikova, O. A., Eckhaus, M., Ried, T., Bonner, W. M., and Nussenzweig, A. (2003a) H2AX haploinsufficiency modifies genomic stability and tumor susceptibility. Cell, 114, 371–383.CrossRefPubMedGoogle Scholar
  12. Celeste, A., Fernandez-Capetillo, O., Kruhlak, M. J., Pilch, D. R., Staudt, D. W., Lee, A., Bonner, R. F., Bonner, W. M., and Nussenzweig, A. (2003b) Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nature Cell Biology, 5(7), 675–679.CrossRefPubMedGoogle Scholar
  13. Celeste, A., Petersen, S., Romanienko, P. J., Fernandez-Capetillo, O., Chen, H. T., Sedelnikova, O. A., Reina-San-Martin, B., Coppola, V., Meffre, E., Difilippantonio, M. J., Redon, C., Pilch, D. R., Olaru, A., Eckhaus, M., Camerini-Otero, R. D., Tessarollo, L., Livak, F., Manova, K., Bonner, W. M. , Nussenzweig, M. C, and Nussenzweig, A. (2002) Genomic instability in mice lacking histone H2AX. Science, 296, 922–927.CrossRefPubMedGoogle Scholar
  14. Chew, Y. C., Camporeale, G., Kothapalli, N., Sarath, G., and Zempleni, J. (2006) Lysine residues in N-terminal and C-terminal regions of human histone H2A are targets for biotinylation by biotinidase. J Nutr Biochem, 17, 225–233.CrossRefPubMedGoogle Scholar
  15. Chowdhury, D., Keogh, M.-C., Ishii, H., Peterson, C. L., Buratowski, S., and Lieberman, J. (2005) Gamma-H2AX dephosphorylation by protein phosphatase 2A facilitates DNA double-strand break repair. Mol Cell, 20, 801–809.CrossRefPubMedGoogle Scholar
  16. Chowdhury, D., Xu, X., Zhong, X., Ahmed, F., Zhong, J., Liao, J., Dykxhoorn, D. M., Weinstock, D. M., Pfeifer, G. P., and Lieberman, J. (2008) A PP4-phosphatase complex dephosphorylates gamma-H2AX generated during DNA replication. Mol. Cell, 31(1), 33–46.CrossRefPubMedGoogle Scholar
  17. Cook, P. J., Ju, B. G., Telese, F., Wang, X., Glass, C. K., and Rosenfeld, M. G. (2009) Tyrosine dephosphorylation of H2AX modulates apoptosis and survival decisions. Nature, 458, 591–596.CrossRefPubMedGoogle Scholar
  18. Cowell, I. G., Sunter, N. J., Singh, P. B., Austin, C. A., Durkacz, B. W., and Tilby, M. J. (2007) Gamma-H2AX foci form preferentially in euchromatin after ionising-radiation. PLoS ONE, 2(10), e1057CrossRefPubMedGoogle Scholar
  19. Crooks, G. E., Hon, G., Chandonia, J. M., and Brenner, S. E. (2004) WebLogo: A sequence logo generator. Genome Res 14, 1188–1190.CrossRefPubMedGoogle Scholar
  20. Davey, C. A., Sargent, D. F., Luger, K., Maeder, A. W., and Richmond, T. J. (2002) Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 A resolution. J Mol Biol, 319, 1097–1113.CrossRefPubMedGoogle Scholar
  21. DeLano, W. (2002) The PyMOL Molecular Graphics System. on World Wide Web http://www.pymol.org.
  22. Difilippantonio, S., Gapud, E., Wong, N., Huang, C.-Y., Mahowald, G., Chen, H. T., Kruhlak, M. J., Callen, E., Livak, F., Nussenzweig, M. C., Sleckman, B. P., and Nussenzweig, A. (2008) 53BP1 facilitates long-range DNA end-joining during V(D)J recombination. Nature, 456, 529–533.CrossRefPubMedGoogle Scholar
  23. Dimitrova, N., Chen, Y.-C. M., Spector, D. L., and de Lange, T. (2008) 53BP1 promotes non-homologous end joining of telomeres by increasing chromatin mobility. Nature, 456, 524–528.CrossRefPubMedGoogle Scholar
  24. Downs, J. A., Lowndes, N. F., and Jackson, S. P. (2000) A role for saccharomyces cerevisiae histone H2A in DNA repair. Nature, 408, 1001–1004.CrossRefPubMedGoogle Scholar
  25. Downs, J. A., Nussenzweig, M. C., and Nussenzweig, A. (2007) Chromatin dynamics and the preservation of genetic information. Nature, 447, 951–958.CrossRefPubMedGoogle Scholar
  26. Du, L.-L., Moser, B. A., and Russell, P. (2004) Homo-oligomerization is the essential function of the tandem BRCT domains in the checkpoint protein Crb2. Biol Chem, 279(37), 38409–38414.CrossRefGoogle Scholar
  27. Eliezer, Y., Argaman, L., Rhie, A., Doherty, A. J., and Goldberg, M. (2009) The direct interaction between 53BP1 and MDC1 is required for the recruitment of 53BP1 to sites of damage. J Biol Chem, 284(1), 426–435.CrossRefPubMedGoogle Scholar
  28. Felsenfeld, G. and Groudine, M. (2003) Controlling the double helix. Nature, 421, 448–453.CrossRefPubMedGoogle Scholar
  29. Fernandez-Capetillo, O., Chen, H.-T., Celeste, A., Ward, I., Romanienko, P. J., Morales, J. C., Naka, K., Xia, Z., Camerini-Otero, R. D., Motoyama, N., Carpenter, P. B., Bonner, W. M., Chen, J., and Nussenzweig, A. (2002) DNA damage-induced G2-M checkpoint activation by histone H2AX and 53BP1. Nat Cell Biol, 4, 993–997.CrossRefPubMedGoogle Scholar
  30. Fink, M., Imholz, D., and Thoma, F. (2007) Contribution of the serine 129 of histone H2A to chromatin structure. Mol. Cell. Biol, 27(10), 3589–3600.CrossRefPubMedGoogle Scholar
  31. Georgiev, O. and Birnstiel, M. L. (1985) The conserved CAAGAAAGA spacer sequence is an essential element for the formation of 3′ termini of the sea urchin H3 histone mRNA by RNA processing. EMBO J, 4(2), 481–489.PubMedGoogle Scholar
  32. Goodarzi, A. A., Noon, A. T., Deckbar, D., Ziv, Y., Shiloh, Y., Löbrich, M., and Jeggo, P. A. (2008) ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin. Mol Cell, 31, 167–177.CrossRefPubMedGoogle Scholar
  33. Grenon, M., Costelloe, T., Jimeno, S., O’Shaughnessy, A., FitzGerald, J., Zgheib, O., Degerth, L., and Lowndes, N. F. (2007) Docking onto chromatin via the Saccharomyces cerevisiae Rad9 Tudor domain. Yeast, 24, 105–119.CrossRefPubMedGoogle Scholar
  34. Hammet, A., Magill, C., Heierhorst, J., and Jackson, S. P. (2007) Rad9 BRCT domain interaction with phosphorylated H2AX regulates the G1 checkpoint in budding yeast. EMBO Rep, 8(9), 851–857.CrossRefPubMedGoogle Scholar
  35. Harris, M. E., Böhni, R., Schneiderman, M. H., Ramamurthy, L., Schümperli, D., and Marzluff, W. F. (1991) Regulation of histone mRNA in the unperturbed cell cycle: evidence suggesting control at two posttranscriptional steps. Mol Cell Biol, 11(5), 2416–2424.PubMedGoogle Scholar
  36. Heo, K., Kim, H., Choi, S. H., Choi, J., Kim, K., Gu, J., Lieber, M. R., Yang, A. S., and An, W. (2008). FACT-mediated exchange of histone variant H2AX regulated by phosphorylation of H2AX and ADP-Ribosylation of Spt16. Mol. Cell, 30, 86–97.CrossRefPubMedGoogle Scholar
  37. Huyen, Y., Zgheib, O., DiTullio, R. A., Jr. Gorgoulis, V. G., Zacharatos, P., Petty, T. J., Sheston, E. A., Mellert, H. S., Stavridi, E. S., and Halazonetis, T. D. (2004) Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature, 432(7015), 406–411.CrossRefPubMedGoogle Scholar
  38. Ikura, T., Tashiro, S., Kakino, A., Shima, H., Jacob, N., Amunugama, R., Yoder, K., Izumi, S., Kuraoka, I., Tanaka, K., Kimura, H., Ikura, M., Nishikubo, S., Ito, T., Muto, A., Miyagawa, K., Takeda, S., Fishel, R., Igarashi, K., and Kamiya, K. (2007) DNA damage-dependent acetylation and ubiquitination of H2AX enhances chromatin dynamics. Mol Cell Biol, 27(20), 7028–7040.CrossRefPubMedGoogle Scholar
  39. Ivanova, V. S., Hatch, C. L., and Bonner, W. M. (1994a) Characterization of the human histone H2A.X gene. Comparison of its promoter with other H2A gene promoters. J Biol Chem, 269(39), 24189–24194.PubMedGoogle Scholar
  40. Ivanova, V. S., Zimonjic, D., Popescu, N., and Bonner, W. M. (1994b) Chromosomal localization of the human histone H2A.X gene to 11q23.2-q23.3 by fluorescence in situ hybridization. Hum Genet, 94(3), 303–306.CrossRefPubMedGoogle Scholar
  41. Keogh, M.-C., Kim, J.-A., Downey, M., Fillingham, J., Chowdhury, D., Harrison, J. C., Onishi, M., Datta, N., Galicia, S., Emili, A., Lieberman, J., Shen, X., Buratowski, S., Haber, J. E., Durocher, D., Greenblatt, J. F., and Krogan, N. J. (2006) A phosphatase complex that dephosphorylates gamma-H2AX regulates DNA damage checkpoint recovery. Nature, 439, 497–501.CrossRefPubMedGoogle Scholar
  42. Kilkenny, M. L., Doré, A. S., Roe, S. M., Nestoras, K., Ho, J. C.Y., Watts, F. Z., and Pearl, L. H. (2008) Structural and functional analysis of the Crb2-BRCT2 domain reveals distinct roles in checkpoint signaling and DNA damage repair. Genes Dev, 22, 2034–2047.CrossRefPubMedGoogle Scholar
  43. Kimura, H., Takizawa, N., Allemand, E., Hori, T., Iborra, F. J., Nozaki, N., Muraki, M., Hagiwara, M., Krainer, A. R., Fukagawa, T., and Okawa, K. (2006) A novel histone exchange factor, protein phosphatase 2C gamma, mediates the exchange and dephosphorylation of H2A-H2B. J Cell Biol, 175(3), 389–400.CrossRefPubMedGoogle Scholar
  44. Kruhlak, M. J., Celeste, A., Dellaire, G., Fernandez-Capetillo, O., Müller, W. G., McNally, J. G., Bazett-Jones, D. P., and Nussenzweig, A. (2006) Changes in chromatin structure and mobility in living cells at sites of DNA double-strand breaks. J. Cell Biol, 172(6), 823–834.CrossRefPubMedGoogle Scholar
  45. Lee, M. S., Edwards, R. A., Thede, G. L., and Glover, J. N. M. (2005) Structure of the BRCT repeat domain of MDC1 and its specificity for the free COOH-terminal end of the gamma-H2AX histone tail. J. Biol Chem, 280(37), 32053–32056.CrossRefPubMedGoogle Scholar
  46. Lengauer, C., Kinzler, K. W., and Vogelstein, B. (1998) Genetic instabilities in human cancers. Nature, 396, 643–649.CrossRefPubMedGoogle Scholar
  47. Lukas, C., Melander, F., Stucki, M., Falck, J., Bekker-Jensen, S., Goldberg, M., Lerenthal, Y., Jackson, S. P., Bartek, J., and Jiri, L. (2004) Mdc1 couples DNA double-strand break recognition by Nbs1 with its H2AX-dependent chromatin retention. EMBO J, 23, 2674–2683.CrossRefPubMedGoogle Scholar
  48. Madigan, J. P., Chotkowski, H. L., and Glaser, R. L. (2002) DNA double-strand break-induced phosphorylation of Drosophila histone variant H2Av helps prevent radiation-induced apoptosis. Nucleic Acids Res, 30(17), 3698–3705.CrossRefPubMedGoogle Scholar
  49. Malik, H. S. and Henikoff, S. (2003). Phylogenomics of the nucleosome. Nat Struct Biol, 10(11), 882–891.CrossRefPubMedGoogle Scholar
  50. Mannironi, C., Bonner, W. M., and Hatch, C. L. (1989) H2A.X. a histone isoprotein with a conserved C-terminal sequence, is encoded by a novel mRNA with both DNA replication type and polyA 3′ processing signals. Nucleic Acids Res, 17(22), 9113–9126.CrossRefPubMedGoogle Scholar
  51. Marzluff, W. F., Gongidi, P., Woods, K. R., Jin, J., and Maltais, L. J. (2002) The human and mouse replication-dependent histone genes. Genomics, 80, 487–498.CrossRefPubMedGoogle Scholar
  52. McKinnon, P. J. and Caldecott, K. W. (2007) DNA strand break repair and human genetic disease. Annu Rev Genomics Hum Genet, 8, 35–55.CrossRefGoogle Scholar
  53. Monen, J., Maddox, P. S., Hyndman, F., Oegema, K., and Desai, A. (2005) Differential role of CENP-A in the segregation of holocentric C. elegans chromosomes during meiosis and mitosis. Nat Cell Biol, 7, 1248–1255.CrossRefPubMedGoogle Scholar
  54. Morgenstern, B.(1999) DIALIGN 2: improvement of the segment-to-segment approach to multiple sequence alignment. Bioinformatics, 15(3), 211–218.CrossRefPubMedGoogle Scholar
  55. Panier, S. and Durocher, D. (2009) Regulatory ubiquitylation in response to DNA double-strand breaks. DNA Repair, 8(4), 436–443.CrossRefPubMedGoogle Scholar
  56. Pantazis, P. and Bonner, W. M. (1981) Quantitative determination of histone modification. H2A acetylation and phosphorylation. J Biol Chem, 256(9), 4669–4675.PubMedGoogle Scholar
  57. Paull, T. T., Rogakou, E. P., Yamazaki, V., Kirchgessner, C. U., Gellert, M., and Bonner, W. M. (2000) A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol, 10, 886–895.CrossRefPubMedGoogle Scholar
  58. Pilch, D. R., Sedelnikova, O. A., Redon, C., Celeste, A., Nussenzweig, A., and Bonner, W. M. (2003) Characteristics of gamma-H2AX foci at DNA double-strand breaks sites. Biochem Cell Biol, 81, 123–129.CrossRefPubMedGoogle Scholar
  59. Redon, C., Pilch, D., Rogakou, E., Sedelnikova, O., Newrock, K., and Bonner, W. (2002) Histone H2A variants H2AX and H2AZ. Curr Opin Genet Dev, 12, 162–169.CrossRefPubMedGoogle Scholar
  60. Rice, P., Longden, I., and Bleasby, A. (2000) EMBOSS: The european molecular biology open software suite. Trends Genet, 16(6), 276–277.CrossRefPubMedGoogle Scholar
  61. Rios-Doria, J., Velkova, A., Dapic, V., Galáan-Caridad, J. M., Dapic, V., Carvalho, M. A., Melendez, J., and Monteiro, A. N. A. (2009) Ectopic expression of histone H2AX mutants reveals a role for its post-translational modifications. Cancer Biol Ther, 8(5), 422–434.PubMedGoogle Scholar
  62. Rogakou, E. P., Boon, C., Redon, C., and Bonner, W. M. (1999) Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol., 146(5), 905–915.CrossRefPubMedGoogle Scholar
  63. Rogakou, E. P., Pilch, D. R., Orr, A. H., Ivanova, V. S., and Bonner, W. M. (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem, 273(10), 5858–5868.CrossRefPubMedGoogle Scholar
  64. Rothkamm, K., Krüger, I., Thompson, L. H., and Löbrich, M. (2003) Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol Cell Biol, 23(16), 5706–5715.CrossRefPubMedGoogle Scholar
  65. Sanders, S. L., Portoso, M., Mata, J., Bähler, J., Allshire, R. C., and Kouzarides, T. (2004) Methylation of histone H4 lysine 20 controls recruitment of Crb2 to sites of DNA damage. Cell, 119, 603–614.CrossRefPubMedGoogle Scholar
  66. Shroff, R., Arbel-Eden, A., Pilch, D., Ira, G., Bonner, W. M., Petrini, J. H., Haber, J. E., and Lichten, M. (2004) Distribution and dynamics of chromatin modification induced by a defined DNA double-strand break. Curr Biol, 14, 1703–1711.CrossRefPubMedGoogle Scholar
  67. Soulier, J. and Lowndes, N. F. (1999) The BRCT domain of the S. cerevisiae checkpoint protein Rad9 mediates a Rad9-Rad9 interaction after DNA damage. Curr Biol, 9(10), 551–554.CrossRefPubMedGoogle Scholar
  68. Stucki, M., Clapperton, J. A., Mohammad, D., Yaffe, M. B., Smerdon, S. J., and Jackson, S. P. (2005) MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell, 123, 1213–1226.CrossRefPubMedGoogle Scholar
  69. Sullivan Jr., W.J., Naguleswaran, A., and Angel, S. O. (2006) Histones and histone modifications in protozoan parasites. Cell Microbiol, 8(12): 1850–1861.CrossRefPubMedGoogle Scholar
  70. Sweeney, F. D., Yang, F., Chi, A., Shabanowitz, J., Hunt, D. F., and Durocher, D. (2005) Saccharomyces cerevisiae Rad9 Acts as a Mec1 adaptor to allow Rad53 activation. Curr Biol, 15(15): 1364–1375.CrossRefPubMedGoogle Scholar
  71. Unal, E., Arbel-Eden, A., Sattler, U., Shroff, R., Lichten, M., Haber, J. E., Koshland, D. (2004) DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain. Mol Cell, 16, 991–1002.CrossRefPubMedGoogle Scholar
  72. Uziel, T., Lerenthal, Y., Moyal, L., Andegeko, Y., Mittelman, L., Shiloh, Y. (2003) Requirement of the MRN complex for ATM activation by DNA damage. EMBO J, 22(20), 5612–5621.CrossRefPubMedGoogle Scholar
  73. Walker, J. R., Corpina, R. A., and Goldberg, J. (2001) Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature, 412, 607–614.CrossRefPubMedGoogle Scholar
  74. Ward, I., Kim, J.-E. Minn, K., Chini, C. C., Mer, G., and Chen, J. (2006) The tandem BRCT domain of 53BP1 is not required for its repair function. J Biol Chem, 281(50), 38472–38477.CrossRefPubMedGoogle Scholar
  75. West, M. H. P. and Bonner, W. M. (1980) Histone 2A, a heteromorphous family of eight protein species. Biochemistry, 19(14), 3238–3245.CrossRefPubMedGoogle Scholar
  76. White, C. L., Suto, R. K., and Luger, K. (2001) Structure of the yeast nucleosome core particle reveals fundamental changes in internucleosome interactions. EMBO J, 20(18), 5207–5218.CrossRefPubMedGoogle Scholar
  77. Whitfield, M. L., Zheng, L.-X., Baldwin, A., Ohta, T., Hurt, M. M., and Marzluff, W. F. (2000) Stem-loop binding protein, the protein that binds the 3′ end of histone mRNA, is cell cycle regulated by both translational and posttranslational mechanisms. Mol Cell Biol, 20(12), 4188–4198.CrossRefPubMedGoogle Scholar
  78. Xiao, A., Li, H., Shechter, D., Ahn, S. H., Fabrizio, L. A., Erdjument-Bromage, H., Ishibe-Murakami, S., Wang, B., Tempst, P., Hofmann, K., Patel, D. J., Elledge, S., J., and Allis, C. D. (2009) WSTF regulates the H2A.X DNA damage response via a novel tyrosine kinase activity. Nature, 457, 57–62.CrossRefPubMedGoogle Scholar
  79. Zhang, L., Eugeni, E. E., Parthun, M. R., and Freitas, M. A. (2003) Identification of novel histone post-translational modifications by peptide mass fingerprinting. Chromosoma, 112, 77–86.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Centre for Chromosome BiologySchool of Natural Sciences, National University of IrelandGalwayIreland

Personalised recommendations