Earth and Life pp 615-630 | Cite as

An Analysis of the Ireviken Event in the Boree Creek Formation, New South Wales, Australia

Part of the International Year of Planet Earth book series (IYPE)

Abstract

Conodont data from a section through the Boree Creek Formation in New South Wales, the best sequence in Australia extending through the Llandovery–Wenlock boundary, represent strata of the Ireviken Event. A significant number of conodont datum planes within the sequence indicating step-wise extinctions can be recognised and correlated with the sequence through the Visby Beds, in Gotland, Sweden, the most comprehensively analysed Ireviken Event sequence globally. This intercontinental correlation, involving both north and south hemispheres, adds to the data set concerning cyclicity in Silurian marine strata and postulated models concerning causality.

Keywords

Silurian Llandovery Wenlock Australia Boree Creek Formation Conodonts Ireviken Event Stepped extinctions Stratigraphic alignments Cyclicity 

References

  1. Aldridge RJ (1976) Comparison of macrofossil communities and conodont distribution in the British Silurian. In: Barnes CR (ed) Conodont paleoecology, Geol Assoc Canada, Spec Paper 15:91–104Google Scholar
  2. Aldridge RJ (1985) Conodonts from the Silurian System of the Btitish Isles. In: Higgins AC, Austin RL (eds) A stratigraphical index of Conodonts. Ellis Horwood, Chichester, pp 68–92Google Scholar
  3. Aldridge RJ, Jeppsson L (1984) Ecological specialists among Silurian conodonts. Spec Pap Palaeontol Lond 32:141–149Google Scholar
  4. Aldridge RJ, Jeppsson L, Dorning KJ (1993) Early Silurian oceanic episodes and events. J Geol Soc 150:501–513CrossRefGoogle Scholar
  5. Alley RB, Finkel RC, Nishiizumi K, Anandakrishnan S, Shuman CA, Mershon GR, Zielinski GA, Mayewski PA (1995) Changes in continental and sea-salt atmospheric loadings in central Greenland during the most recent deglaciation. J Glaciol 41:503–514Google Scholar
  6. Alvarez L, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for the Cretaceous–Tertiary extinction. Science 208:1095–1108CrossRefGoogle Scholar
  7. Anderson MA, Dargan G, Brock GA, Talent JA, Mawson R (1995) Maximising efficiency of conodont separations using sodium polytungstate solution. Cour Forsch-inst Senckenb 182:515–521Google Scholar
  8. Andrew AS, Talent JA, Mawson R, Whitford DJ, Hamilton, PJ (1994) Comparison of carbon isotopic responses associated with Silurian-Devonian mass extinction events. Erlanger geol Abh 122:4Google Scholar
  9. Armstrong HA (1990) Conodonts from the Upper Ordovician–Lower Silurian carbonate platform of north Greenland. Bull Grϕnlands Geologiske Undersøgelese 159:1–151Google Scholar
  10. Bergman CF (1989) Silurian paulinitid polychaetes from Gotland. Fossils Strata 25:1–128Google Scholar
  11. Bischoff GCO (1986) Early and Middle Silurian conodonts from midwestern New South Wales. Cour Forsch-inst Senckenb 89:1–337Google Scholar
  12. Bischoff GCO (1997) Ansella mischa n. sp. (Conodonta) from the late Llandoverian and early Wenlockian strata of midwestern New South Wales. N Jb Geol Paläont Mh H8:477–488Google Scholar
  13. Bischoff GCO (1998) New species of Panderodus (Conodonta) from late Llandoverian and early Wenlockian strata of midwestern New South Wales. N Jb Geol Paläont Abh 210:267–288Google Scholar
  14. Calner M, Eriksson ME (2006) Silurian research at the crossroads. GFF (Geologiska Föreningens i Stockholm Förhandlingar) 128:73–74CrossRefGoogle Scholar
  15. Chatterton BDE, Edgecombe GD, Tuffnell PA (1990) Extinction and migration in Silurian trilobites and conodonts of northwestern Canada. J Geol Soc Lond 147:703–715CrossRefGoogle Scholar
  16. Cockle P (1999) Conodont data in relation to time, space and environmental relationships in the Silurian (late Llandovery–Ludlow) succession at Boree Creek (New South Wales, Australia). Abhandlungen der Geologischen Bundesanstalt 54:107–133Google Scholar
  17. Eriksson ME (1997) Lower Silurian polychaetaspid polychaetes from Gotland, Sweden. GFF 119(3):213–230CrossRefGoogle Scholar
  18. Eriksson ME (2006) The Silurian Ireviken Event and vagile benthic faunal turnovers (Polychaeta; Eunicida) on Gotland, Swden. GFF 128(2):91–96CrossRefGoogle Scholar
  19. Erlfeldt A (2005) Brachiopod faunal dynamics during the Silurian Ireviken Event, Gotland, Sweden. Examensarbete i geologi vid Lunds universitet, Nr 199, 22 ppGoogle Scholar
  20. Gelsthorpe DN (2004) Microplankton changes through the early Silurian Ireviken extinction event on Gotland, Sweden. Rev Paleobot Palynol 130:89–113CrossRefGoogle Scholar
  21. Helfrich CT (1980) Late Llandovery–Early Wenlock conodonts from the upper part of the Rose Hill and the basal part of the Mifflinton Formations, Virginia, West Virginia, and Maryland. J Paleontol 54:557–569Google Scholar
  22. Holloway DJ, Lane PD (1998) Effaced styginid trilobites from the Silurian of New South Wales. Palaeontology 4:853–896Google Scholar
  23. Jell JS, Talent JA (1989) Australia: the most instructive sections. In: Holland CH, Bassett MG (eds) A global standard for the Silurian system. Nat Mus of Wales, Geol Ser 9:183–200Google Scholar
  24. Jeppsson L (1987) Lithological and conodont distributional evidence for episodes of anomalous oceanic conditions during the Silurian. In: Aldridge RJ (ed) Palaeobiology of conodonts. Ellis Horwood, Chichester, pp 129–145Google Scholar
  25. Jeppsson L (1990) An oceanic model for lithological and faunal changes tested on the Silurian record. J Geol Soc Lond 147:633–674CrossRefGoogle Scholar
  26. Jeppsson L (1993) Silurian events: the theory and the conoidonts. Proc Estonian Acad Sci USA 42:23–27Google Scholar
  27. Jeppsson L (1997a) A new latest Telychian, Sheinwoodian and Early Homerian (Early Silurian) Standard Conodont Zonation. Trans R Soc Edinburgh: Earth Sci 88:91–114CrossRefGoogle Scholar
  28. Jeppsson L (1997b) The anatomy of the mid-Early Silurian Ireviken event and a senario for P–S events. In: Brett CE, Baird GC (eds) Palaeontological events–stratigraphic, ecological and evolutionary implications. Columbia University Press, New York, pp 451–492Google Scholar
  29. Jeppsson L (1998) Silurian Oceanic events: summary of general characteristics. In: Landing E, Johnson ME (eds) Silurian cycles. New York State Mus Bull 491:239–257Google Scholar
  30. Jeppsson L, Aldridge RJ (2000) Ludlow (late Silurian) oceanic episodes and events. J Geol Soc, London 157:1137–1148CrossRefGoogle Scholar
  31. Jeppsson L, Männik P (1993) High-resolution correlations between Gotland and Estonia near the base of the Wenlock. Terra Nova 5:348–358CrossRefGoogle Scholar
  32. Jeppsson L, Aldridge RJ, Dorning KJ (1995) Wenlock (Silurian) oceanic episodes and events. J Geol Soc, London 152:487–498CrossRefGoogle Scholar
  33. Jeppsson L, Anehus R, Fredholm D (1999) The optimal acetate buffered acetic acid technique for extracting phosphatic fossils. J Paleontol 73:964–972Google Scholar
  34. Jeppsson L, Talent JA, Mawson R, Simpson AJ, Andrew A, Calner M, Whitford DJ, Trotter JA, Sandstrom O, Caldon HJ (2007) High Resolution Late Silurian Correlations between Gotland, Sweden and the Broken Rive Region, NE Australia: lithologies, conodonts and isotopes. Palaeogeogr Palaeoclimatol Palaeoecol 245:115–137CrossRefGoogle Scholar
  35. Jerre F (1993) Conulariid microfossils from the Lower Visby Beds of Gotland, Sweden. Palaeontology 36:403–424Google Scholar
  36. Johnson ME (2006) Relationship of Silurian sea level fluctuations to oceanic episodes and events. GFF 128:115–121CrossRefGoogle Scholar
  37. Kaljo D, Martma T (2006) Application of carbon isotope stratigraphy to dating the Baltic Silurian rocks. GFF 128:123–129CrossRefGoogle Scholar
  38. Kaljo D, Boucot AJ, Corfield RM, Herisse AL, Koren TN, Kriz J, Mannik P, Mars T, Nestor V, Shaver RH, Siveter DJ, Viira V (1996) Silurian bio-events. In: Walliser OH (ed) Global events and event stratigraphy in the Phanerozoic. Springer, Berlin, pp 174–224Google Scholar
  39. Kaljo D, Martma T, Mannik P, Viira V (2003) Implications of Gondwana glaciations in the Baltic late Ordovician and Silurian and a carbon isotopic test of environmental cyclicity. Bull de la Societe Geologique de France 174:59–66CrossRefGoogle Scholar
  40. Mabillard JE, Aldridge RJ (1985) Microfossil distribution across the base of the Wenlock Series in the type area. Palaeontology 28:89–100Google Scholar
  41. Martma T, Brazauskas A, Kaljo D, Kaminskas D, Musteikis P (2005) The Wenlock–Ludlow carbon isotope trend in the Vidukle core, Lithuania, and its relations with oceanic events. Geol Q 49:223–234Google Scholar
  42. Melchin MJ (1994) Graptolite extinction across the Llandovery–Wenlock boundary. Lethaia 27:285–290CrossRefGoogle Scholar
  43. Mikulic DG, Kluessendorf J (1999) Stasis and extinctions of Silurian (Llandovery – Wenlock) trilobite associations related to oceanic cyclicity. J Paleontol 73:320–325Google Scholar
  44. Molloy PD (2006) Analysis of the Ireviken extinction event in the Boree Creek Formation, New South Wales, Australia. Unpublished PhD thesis, Macquarie University, Australia, 239ppGoogle Scholar
  45. Munnecke A, Samtleben C, Bickert T (2003) The Ireviken Event in the lower Silurian of Gotland, Sweden – relation to similar Palaeozoic and Proterozoic events. Palaeogeogr Palaeoclimatol Palaeoecol 195:99–124CrossRefGoogle Scholar
  46. Over DJ, Chatterton DE (1987) Silurian conodonts from the southern Mackenzie Mountains, northwest Territories, Canada. Geolog et Palaeontol 21:1–49Google Scholar
  47. Pickett JW (1982) The Silurian system in New South Wales. Bull Geol Surv NSW 29:1–264Google Scholar
  48. Rothrock DA Percival DB, Wensnahan M (2008) The decline in arctic sea-ice thickness: separating the spatial, annual, and interannual variability in a quarter century of submarine data. J Geophys Res 113:C05003. doi:10.1029/2007JC004252CrossRefGoogle Scholar
  49. Saltzman MR (2001) Silurian δ13C stratigraphy: a view from North America. Geology 29:671–674CrossRefGoogle Scholar
  50. Serreze MC, Maslanik JA, Scambos TA, Fetterer F, Stroeve J, Knowles K, Fowler C, Drobot S, Barry RG, Haran TM (2003) A record minimum arctic sea ice extent and area in 2002. Geophys Res Lett 30(3):10CrossRefGoogle Scholar
  51. Sherwin L (1971) Stratigraphy of the Cheesemans Creek district, New South Wales. Rec Geol Surv, NSW 13:199–237Google Scholar
  52. Simpson AJ (1995) Silurian conodont biostratigraphy in Australia: a review and critique. Cour Forsch-inst Senckenb 182:325–346Google Scholar
  53. Talent JA, Berry WBN, Boucot AJ (1975) Correlation of the Silurian rocks of Australia, New Guinea and New Zealand. Geol Soc Am Spec Pap 150:108 ppGoogle Scholar
  54. Talent JA, Mawson R, Andrew AS, Hamilton PJ, Whitford DJ (1993) Middle Palaeozoic extinction events: faunal and isotopic data. Palaeogeogr Palaeoclimatol Palaeoecol 104:139–152CrossRefGoogle Scholar
  55. Talent JA, Mawson R, Simpson AJ (2003) Silurian of Australia and New Guinea. In: Landing E, Johnson ME (eds) Silurian lands and seas–palaeogeography outside of Laurentia. New York State Museum Bulletin, vol 493. New York State Museum, Albany, NY, pp 181–200Google Scholar
  56. Thomas E (2007) Cenozoic mass extinctions in the deep sea: what perturbs the largest habitat on Earth? Geol Soc Am Spec Pap 424:1–23Google Scholar
  57. Uyeno TT (1990) Biostratigraphy and Conodont Faunas of Upper Ordovician through Middle Devonian Rocks, Eastern Arctic Archipelago. Geol Surv Canada Bull 401:2–210Google Scholar
  58. Valentine JL, Brock GA, Molloy PD (2003) Linguliformean brachiopod faunal turnover across the Ireviken Event (Silurian) at Boree Creek, central-western New South Wales, Australia. Cour Forsch-inst Senckenb 242:301–327Google Scholar
  59. Veron JEN (2008) Mass extinctions and ocean acidification: biological constraints on geological dilemmas. Coral Reefs 27:459–472CrossRefGoogle Scholar
  60. Walker DB (1959) Palaeozoic stratigraphy of the area to the west of Borenore, N.S.W. J Proc R Soc NSW 93:39–46Google Scholar
  61. Walliser OH (1964) Conodonten des Silurs. Abhandlungen des Hessischen Landesamtes fur Bodenforschung 41:1–106Google Scholar
  62. Watkins R, Walsh KA, Kuglitsch JJ (1999) Silurian (Llandovery/Wenlock) foraminiferida in carbonate environments of southwestern Wisconsin. J Paleontol 73:540–546Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Earth and Planetary SciencesMacquarie UniversitySydneyAustralia
  2. 2.Department of Earth and Planetary Sciences, Museum Studies and Centre for Ecostratigraphy and Palaeobiology (MUCEP)Macquarie UniversitySydneyAustralia

Personalised recommendations