Advertisement

Earth and Life pp 535-555 | Cite as

Quantitative Approach to Diversity and Decline in Late Palaeozoic Trilobites

  • Rudy Lerosey-AubrilEmail author
  • Raimund Feist
Part of the International Year of Planet Earth book series (IYPE)

Abstract

Quantitative data reveal complex evolution in late trilobite diversity. In the Middle to early Late Devonian, a series of extinction events led to dramatic taxonomic impoverishment of the trilobites. In the Famennian, when only two orders remained, originations began to compensate for the still high extinction rates, marking the start of a remarkable diversification. Although interrupted by the major Hangenberg turnover, the general diversification trend accelerated in the Tournaisian, whereas extinctions became modest. Originations diminished markedly during the Viséan and Serphukovian, causing this diversity to decrease to the level observed in the Frasnian. It was never much higher thereafter, despite massive restructuring of the trilobite communities in the early Pennsylvannian; this allowed for progressive domination of the ditomopygines. After another decline in the Kasimovian, a period of stasis occurred with very low diversity levels and almost no renewal. The last burst of diversification occurred in the Wordian, but ceased rapidly in the Capitanian when degradation of environmental conditions began to inhibit originations. Thus, extinction of the Trilobita at the end of the Permian resulted from disappearance of merely a handful of genera.

Keywords

Trilobites Devonian-Permian extinctions Quantitative analysis Early Devonian diversity peak Mid-Devonian–Frasnian decrease Famennian–Tournaisian diversity acceleration Viséan–Serpukhovian marked diversity decrease Last diversification Wordian Decreasing diversity Capitanian to end-Permian total extinction 

Notes

Acknowledgements

Many people have generously helped us gather the literature required to create the database used in this study; we are very grateful to all of them. We especially thank Martin Basse (Forschungsinstitute Senckenberg), Carsten Brauckmann (Technischen Universität Clausthal), James Cook, Gerhard Hahn, and Thomas A. Hegna (Yale University) for kind assistance in this regard. We are also indebted to Euan N.K. Clarkson and an anonymous referee for helpful comments and to the editor, John Talent, for major linguistic improvements in our text. This is a contribution of the Senckenberg Forschungsinstitut und Naturmuseum (Frankfurt am Main) and UMR 5554, CNRS (Montpellier) to IGCP Project 596 “Climate change and biodiversity patterns in the Mid-Palaeozoic (Early Devonian to Late Carboniferous)”.

References

  1. Adrain JM (2008) A global species database of Trilobita: progress, results, and revision of the Treatise. In: Rabano I, Gozalo R, Garcia-Bellido D (eds) Advances in Trilobite research. Cuadernos del Museo Geominero 9:27–28Google Scholar
  2. Ali JR, Wignall PB (2007) Comment on ‘Fusiline biotic turnover across the Guadalupian–Lopingian (middle–upper Permian) boundary in mid-oceanic carbonate build-ups: biostratigraphy of accreted limestone in Japan’ by Ayano Ota and Yukio Isozaki. J Asian Earth Sci 30:199–200CrossRefGoogle Scholar
  3. Ali JR, Thompson GM, Song X et al (2002) Emeishan basalts (SW China) and the ‘end-Guadalupian’ crisis: magnetobiostratigraphic constraints. J Geol Soc London 159:21–29CrossRefGoogle Scholar
  4. Alroy J, Aberhan M, Bottjer DJ et al (2008) Phanerozoic trends in the global diversity of marine invertebrates. Science 321:97–100CrossRefGoogle Scholar
  5. Balashova R (1960) Some early Permian trilobites from the north-east of the USSR. Materialy po Geologii i Polezn’m Iskopaem’p Severo-Vostoka SSSR. Magadan 14:74–82Google Scholar
  6. Bottjer DJ, Clapham ME, Fraiser ML et al (2008) Understanding mechanisms for the end-Permian mass extinction and the protracted Early Triassic aftermath and recovery. Geol Soc Am Today 18:4–10Google Scholar
  7. Brauckmann C, Chlupáč I, Feist R (1993) Trilobites at the Devonian–Carboniferous boundary. In: Streel M, Sevastopoulo MG, Paproth E (eds) Devonian–Carboniferous boundary. Ann Soc Géol Belgique 115:507–518Google Scholar
  8. Brezinski DK (1992) Permian trilobites from West Texas. J Paleontol 66:924–943Google Scholar
  9. Brezinski DK (1998) Trilobites from Lower Mississippian starved basin facies of the southern United States. J Paleontol 72:718–725Google Scholar
  10. Brezinski DK (1999) The rise and fall of late Paleozoic trilobites of the United States. J Paleontol 73:164–175Google Scholar
  11. Brezinski DK (2003) Evolutionary and biogeographic implications of phylogenetic analysis of the late Paleozoic trilobite genus Paladin. In: Lane PD, Siviter D, Fortey RA (eds) Trilobites and their relatives. Spec Pap Palaeontol 70:363–375Google Scholar
  12. Brezinski DK (2008) Phylogenetics, systematics, paleoecology, and evolution of the trilobite genera Paladin and Kaskia from the United States. J Paleontol 82:511–527CrossRefGoogle Scholar
  13. Briggs DEG, Fortey RA, Clarkson ENK (1988) Extinction and the fossil record of the arthropods. In: Larwood GP (ed) Extinction and survival in the fossil record. Clarenton Press, OxfordGoogle Scholar
  14. Bultynck P (2000) Subcommission on Devonian stratigraphy. Recognition of Devonian series and stage boundaries in geological areas. Cour Forsch-Inst Senckenberg 225:1–347Google Scholar
  15. Campbell KSW (1961) Carboniferous fossils from the Kuttung rocks of New South Wales. Palaeontology 4:428–474Google Scholar
  16. Chlupáč I (1994) Devonian trilobites – evolution and events. Geobios 27:487–505CrossRefGoogle Scholar
  17. Chlupáč I, Feist R, Morzadec P (2000) Trilobites and standard Devonian stage boundaries. In: Bultynck P (ed) Subcommission on Devonian stratigraphy. Fossil groups important for boundary definition. Cour Forsch-Inst Senckenberg 220:87–98Google Scholar
  18. Clapham ME, James NP (2008) Paleoecology of Early–Middle Permian marine communities in eastern Australia: response to global climate change in the aftermath of the Late Paleozoic ice age. Palaios 23:738–750CrossRefGoogle Scholar
  19. Clapham ME, Shen S, Bottjer DJ (2009) The double mass extinction revisited: reassessing the severity, selectivity, and causes of the end-Guadalupian biotic crisis (Late Permian). Paleobiology 35:32–50CrossRefGoogle Scholar
  20. Dickins JM (1996) Problems of a Late Palaeozoic glaciation in Australia and subsequent climate in the Permian. Palaeogeogr Palaeoclimatol 125:185–197CrossRefGoogle Scholar
  21. Engel BA, Morris LN (1997) Biostratigraphy of eastern Australian Carboniferous trilobites. Geologica Palaeontol 31:67–96Google Scholar
  22. Erwin DH (1993) The Great Paleozoic crisis, life and death in the Permian. Columbia University, New YorkGoogle Scholar
  23. Erwin DH, Pan HZ (1996) Recoveries and radiations: gastropods after the Permo–Triassic mass extinction. In: Hart MB (ed) Biotic recovery from mass extinction events. Geol Soc Spec Pub 102:223–229Google Scholar
  24. Feist R (1991) The Late Devonian trilobite crises. In: Buffetaut E, Flessa K, Hallam A (eds) Innovations and revolutions in the biosphere. Hist Biol 5:197–214Google Scholar
  25. Feist R (1995) Effect of paedomorphosis in eye reduction on patterns of evolution and extinction in trilobites. In: McNamara KJ (ed) Evolutionary change and heterochrony. Wiley, New YorkGoogle Scholar
  26. Feist R (2002) Trilobites from the latest Famennian Kellwasser crisis in North Africa (Mrirt, central Moroccan Meseta). Acta Palaeontol Pol 47:19–26Google Scholar
  27. Feist R, Petersen MS (1995) Origin and spread of Pudoproetus, a survivor of the Late Devonian trilobite crisis. J Paleontol 69:99–109Google Scholar
  28. Feist R, Schindler E (1994) Trilobites during the Frasnian Kellwasser crisis in European Late Devonian cephalopod limestones. In: Königshof P, Werner R (eds) Willi Ziegler-Festschrift II. Cour Forsch-Inst Senckenberg 169:195–223Google Scholar
  29. Feist R, McNamara KJ, Crônier C, Lerosey-Aubril R (2009) Patterns of extinction and recovery of phacopid trilobites during the Frasnian–Famennian (Late Devonian). Geol Mag 146:12–33CrossRefGoogle Scholar
  30. Flügel E, Kiessling W (2002) Patterns of Phanerozoic reef crises. In: Kiessling W, Flügel E, Golonka J (eds) Phanerozoic reef patterns. SEPM Spec Pub 72:691–733Google Scholar
  31. Gandl J (1987) Die Karbon-Trilobiten des Kantabrischen Gebirges (NW Spanien), 4: Trilobiten aus dem höheren Namur und tieferen Wesfal. Abh Senckenberg Naturforsch Ges 543:1–79Google Scholar
  32. Gandl J (2011) Los trilobites Carboníferos de la Cordillera Cantábrica (España noroccidental), 5: Trilobites [Carboniferous trilobites of the Cantabrian Mountains (NW Spain), 5: upper Westphalian] Abhandlungen der Senckenberg Gesellschaft für Naturforschung, Band 569:143ppGoogle Scholar
  33. Garzanti E, Angiolini L, Brunton H et al (1998) The Bashkirian ‘Fenestella shales’ and the Moscovian ‘Chaetetid shales’ of the Tethys Himalaya (South Tibet, Nepal and India). J Asian Earth Sci 16:119–141CrossRefGoogle Scholar
  34. George AD, Chow N (2002) The depositional record of the Frasnian/Famennian boundary interval in a forereef succession, Canning Basin, Western Australia. Palaeogeogr Palaeoclimatol 181:347–374CrossRefGoogle Scholar
  35. Girard C, Feist R (1997) Eustatic trends in conodont diversity across the Frasnian–Famennian boundary in the stratotype area, Montagne Noire, Southern France. Lethaia 29:329–337CrossRefGoogle Scholar
  36. Girard C, Klapper G, Feist R (2005) Subdivision of the terminal Frasnian linguiformis Conodont Zone, revision of the correlative interval of Montagne Noire Zone 13, and discussion of stratigraphically significant associated trilobites. In: Over JR, Morrow JR, Wignall PB (eds) Understanding Late Devonian and Permian–Triassic biotic and climatic events: towards an integrated approach. Elsevier, Amsterdam, pp 181–198Google Scholar
  37. Hahn G (1990) Palaeobiogeographic distribution and biostratigraphic significance of Lower Carboniferous trilobites: a review. Cour Forsch-Inst Senckenberg 130:199–205Google Scholar
  38. Hahn G, Hahn R (1981) Kulm-Trilobiten und ihr Lebensraum. Natur Museum 111:355–361Google Scholar
  39. Hahn G, Hahn R (1991) Trilobiten aus dem Karbon von SE-Alaska, Teil 1. Geologica Palaeontol 25:147–191Google Scholar
  40. Hahn G, Hahn R (1992) Trilobiten aus dem Karbon von SE-Alaska, Teil 2. Geologica Palaeontol 26:99–133Google Scholar
  41. Hahn G, Hahn R (1993) Neue Trilobiten-Funde aus dem Karbon und Perm Alaskas. Geologica Palaeontol 27:141–163Google Scholar
  42. Hahn G, Hahn R (2005) Kulm trilobites (Lower Carboniferous) from S-China. Palaeontol ZH 79:371–375Google Scholar
  43. Hahn G, Hahn R, Yuan J-L (1989) Trilobites from the Upper Carboniferous (Westphalian A) of S-China (N-Guangxi). Geologica Palaeontol 23:113–203Google Scholar
  44. Hahn G, Brauckmann C, Gröning E (2001) Carboniferous and Permian trilobites in South America. Acta Geol Leopold 24:259–270Google Scholar
  45. Haq BU, Schutter SR (2008) A chronology of Paleozoic sea-level changes. Science 322:64–68CrossRefGoogle Scholar
  46. Harper CW Jr (1996) Patterns of diversity, extinction and origination in the Ordovician–Devonian Stropheodontacea. Hist Biol 11:267–288CrossRefGoogle Scholar
  47. Heckel PH, Clayton G (2006) The Carboniferous system. Use of the new official names for the subsystems, series, and stages. Geol Acta 4:403–407Google Scholar
  48. Isbell JL, Miller MF, Wolfe KL, Lenaker PA (2003) Timing of late Paleozoic glaciation in Gondwana: was glaciation responsible for the development of northern hemisphere cyclothems? In: Chan MA, Archer AA (eds) Sedimentary giants – extreme depositional environments. Geol Soc Am Spec Pap 370:5–24Google Scholar
  49. Isozaki Y, Kawahata H, Minoshima K (2007a) The Capitanian (Permian) Kamura cooling event: the beginning of the Paleozoic–Mesozoic transition. Palaeoworld 16:16–30CrossRefGoogle Scholar
  50. Isozaki Y, Kawahata H, Ota A (2007b) A unique carbon isotope record across the Guadalupian–Lopingian (Middle–Upper Permian) boundary in mid-oceanic paleo-atoll carbonates: the high-productivity ‘Kamura event’ and its collapse in Panthalassa. Global Planet Change 55:21–38CrossRefGoogle Scholar
  51. Johnson JG, Klapper G, Sandberg CA (1985) Devonian eustatic fluctuations in Euramerica. Geol Soc Am Bull 96:57–587Google Scholar
  52. Kobayashi T, Hamada T (1980) Carboniferous trilobites of Japan in comparison with Asian, Pacific and other faunas. Palaeontol Soc Japan Spec Pap 23:1–132Google Scholar
  53. Kossovaya OL (1996) The Mid-Carboniferous rugose coral recovery. Geol Soc London Spec Pub 102:187–199CrossRefGoogle Scholar
  54. Kossovaya OL, Guseva EA, Lukin AE et al (2001) Middle Artinskian (Early Permian) ecological events: a case study of the Urals and northern Timan. Proc Estonian Acad Sci Geol 50:95–113Google Scholar
  55. Lerosey-Aubril R (2008) Trilobite biogeography and Permian biochores. In: Rabano I, Gozalo R, Garcia-Bellido D (eds) Advances in trilobite research. Cuadernos del Museo Geominero 9:225–228Google Scholar
  56. Leven EY, Bogoslovskaya MF, Ganelin VG et al (1996) Reorganization of marine biota during the mid-Early Permian epoch. Stratigr Geo Correl 4:57–66Google Scholar
  57. McNamara KJ, Feist R (2008) Patterns of trilobite evolution and extinction during the Frasnian/Famennian mass extinction, Canning Basin, Western Australia. In: Rabano I, Gozalo R, Garcia-Bellido D (eds) Advances in Trilobite research. Cuadernos del Museo Geominero 9:269–274Google Scholar
  58. Montañez IP, Tabor NJ, Niemeier D et al (2007) CO2-forced climate and vegetation instability during Late Paleozoic deglaciation. Science 315:87–91CrossRefGoogle Scholar
  59. Morzadec P (1992) Evolution des Asteropyinae (Trilobita) et variations eustatiques au Dévonien. Lethaia 25:85–96CrossRefGoogle Scholar
  60. Nemirovskaya T, Nigmadganov I (1994) The mid-Carboniferous conodont events. Cour Forsch-Inst Senckenberg 168:319–333Google Scholar
  61. Ogg JG, Ogg G, Gradstein FM (2008) The concise geologic time scale. Cambridge University, CambridgeGoogle Scholar
  62. Ota A, Isozaki Y (2006) Fusiline biotic turnover across the Guadalupian–Lopingian (Middle–Upper Permian) boundary in mid-oceanic carbonate build-ups: biostratigraphy of accreted limestone in Japan. J Asian Earth Sci 26:353–368CrossRefGoogle Scholar
  63. Owens RM (1990) Carboniferous trilobites: the beginning of the end. Geol Today 6:96–100CrossRefGoogle Scholar
  64. Owens RM (2003) The stratigraphical distribution and extinctions of Permian trilobites. Spec Pap Palaeontol 70:377–397Google Scholar
  65. Pan H (2004) Remarks on Permian extinction and Triassic recovery of gastropods. In: Rong JY, Fang ZJ (eds) Mass extinction and recovery, evidence from the Palaeozoic and Triassic of South China. University of Science and Technology, China Press, Beijing [in Chinese with English summary]Google Scholar
  66. Raymond AC, Kelley PH, Lutken CB (1990) Dead by degrees: articulate brachiopods, paleoclimate and the Mid-Carboniferous extinction event. Palaios 5:111–123CrossRefGoogle Scholar
  67. Retallack GJ, Metzger CA, Greaver T et al (2006) Middle–Late Permian mass extinction on land. Geol Soc Am Bull 118:1398–1411CrossRefGoogle Scholar
  68. Rygel MC, Fielding CR, Frank TD et al (2008) The magnitude of Late Paleozoic glacioeustatic fluctuations: a synthesis. J Sediment Res 78:500–511CrossRefGoogle Scholar
  69. Saunders WB, Ramsbottom WHC (1986) The mid-Carboniferous eustatic event. Geology 14:208–212CrossRefGoogle Scholar
  70. Scotese CR, McKerrow WS (1990) Revised world maps and introduction. In: McKerrow, WS, Scotese CR (eds) Palaeozoic palaeogeography and biogeography. Geol Soc Mem 12:1–21Google Scholar
  71. Shen SZ, Shi GR (2002) Paleobiogeographical extinction patterns of Permian brachiopods in the Asian–western Pacific region. Paleobiology 28:449–463CrossRefGoogle Scholar
  72. Shen S-Z, Zhang H, Li W-Z et al (2006) Brachiopod diversity patterns from Carboniferous to Triassic in South China. Geol J 41:345–361CrossRefGoogle Scholar
  73. Shi GR, Shen SZ (2000) Asian–western Pacific Permian Brachiopoda in space and time: biogeography and extinction patterns. In: Yin HF, Dickins JM, Shi GR, Tong JN (eds) Permian–Triassic evolution of Tethys and western circum-Pacific. Elsevier, Amsterdam, pp 327–352Google Scholar
  74. Stanley SM, Yang X (1994) A double mass extinction at the end of the Paleozoic era. Science 266:1340–1344CrossRefGoogle Scholar
  75. Tabor NJ, Poulsen CJ (2008) Paleoclimate across the Late Pennsylvanian–Early Permian tropical paleolatitudes: a review of climate indicators, their distribution, and relation to paleophysiographic climate factors. Palaeogeogr, Palaeoclimat, Palaeoecol 268:293–310CrossRefGoogle Scholar
  76. Tong JN (2004) Evolution of foraminiferid groups through the Paleozoic–Mesozoic transition in South China. In: Rong JY, Fang ZJ (eds) Mass extinction and recovery, evidence from the Palaeozoic and Triassic of South China. University of Science and Technology of China Press, Beijing [in Chinese with English summary], pp 702–719Google Scholar
  77. Walliser OH (1985) Natural boundaries and commission boundaries in the Devonian. Cour Forsch-Inst Senckenberg 7:401–408Google Scholar
  78. Walliser OH (1996) Global events in the Devonian and Carboniferous. In: Walliser OH (ed) Global events and event stratigraphy in the Phanerozoic. Springer, Berlin, pp 225–250CrossRefGoogle Scholar
  79. Wang X-D, Sugiyama T (2000) Diversity and extinction patterns of Permian coral faunas of China. Lethaia 33:285–294CrossRefGoogle Scholar
  80. Wang X-D, Wang X-J, Zhang F et al (2006) Diversity patterns of Carboniferous and Permian rugose corals in South China. Geol J 41:329–343CrossRefGoogle Scholar
  81. Wass RE, Banks MR (1971) Some Permian trilobites from eastern Australia. Palaeontology 14:222–241Google Scholar
  82. Weber VN (1937) Trilobity kamennougolnych i permskych otloshenij SSSR. 1. Kamennougolnye trilobity. [Trilobites of the Carboniferous and Permian system of the USSR. 1. Carboniferous trilobites]. Monogr Paleontol SSSR 71:1–160 [in Russian with abridged English version].Google Scholar
  83. Weems RE (1992) The ‘terminal’ Triassic catastrophic event in perspective: a review of Carboniferous through Early Jurassic vertebrate extinction patterns. Palaeogeogr Palaeoclimatol Palaeoecol 94:1–29CrossRefGoogle Scholar
  84. Weidlich O (2002) Permian reefs re-examined: extrinsic control mechanisms of gradual and abrupt changes during 40 My of reef evolution. Geobios MS 24:287–294CrossRefGoogle Scholar
  85. Weidlich O, Bernecker M (2007) Differential severity of Permian–Triassic environmental changes on Tethyan shallow-water carbonate platforms. Global Planet Change 55:209–235CrossRefGoogle Scholar
  86. Yin H, Feng Q, Lai X et al (2007) The protracted Permo–Triassic crisis and multi-episode extinction around the Permian–Triassic boundary. Global Planet Change 55:1–20CrossRefGoogle Scholar
  87. Yuan JL (1988) Proetiden aus dem jüngeren Oberdevon von Süd-China. Palaeontogr A 201:1–102Google Scholar
  88. Yuan J-L, Li Y (2000) Biostratigraphy of Carboniferous trilobites in China. J Stratigr 24:283–289 [in Chinese with English summary]Google Scholar
  89. Yuan J-L, Xiang L-W (1998) Trilobite fauna at the Devonian–Carboniferous boundary in South China (S-Guizhou and N-Guangxi). Nat Mus Natur Sci, Spec Publ 8:1–281Google Scholar
  90. Ziegler W, Lane HR (1987) Cycles in conodont evolution from Devonian to mid-Carboniferous. In: Aldridge RJ (ed) Palaeobiology of conodonts. Horwood Press, Chichester, pp 148–163Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Senckenberg Forschungsinstitut und Naturmuseum FrankfurtFrankfurt am MainGermany
  2. 2.Laboratoire de Paléontologie, Institut des Sciences de l’EvolutionUniversité Montpellier IIMontpellierFrance

Personalised recommendations