Advertisement

Potential phytoplankton indicator species for monitoring Baltic coastal waters in the summer period

  • Andres Jaanus
  • Kaire Toming
  • Seija Hällfors
  • Kaire Kaljurand
  • Inga Lips
Part of the Developments in Hydrobiology book series (DIHY, volume 207)

Abstract

There are very few time series documenting clear trends of change in the biomass of total phytoplankton or single taxa that coincide with trends of increasing nutrient concentrations. Weekly or biweekly monitoring since 1997 on a cross section of the central Gulf of Finland (NE Baltic Sea) with similar climatic and hydrographic conditions, but different nutrient levels, provided a uniform dataset. In order to evaluate seasonal (June–September) patterns of phytoplankton succession, more than 1,200 samples were statistically analyzed by selecting 12 dominant taxa using wet weight biomass values. In addition, the continuously measured hydrographic parameters on board the ships of opportunity, and simultaneous nutrient analyses gave high frequency information on the water masses. The objective of this study was to identify the taxa that may prove indicative in the assessment of eutrophication in the appropriate monitoring time periods. None of the most common bloom-forming species (Aphanizomenon sp., Nodularia spumigena, and Heterocapsa triquetra) showed reliable correlations with enhanced nutrient concentrations. The species we suggest as reliable eutrophication indicators—oscillatorialean cyanobacteria and the diatoms Cyclotella choctawhatcheeana and Cylindrotheca closterium—showed the best relationships with total phosphorus concentrations. Their maxima appear toward the end of July or in August–September when phytoplankton community structure is more stable, and less frequent observations may give adequate results. Another diatom, Skeletonema costatum, exhibited stronger correlations with dissolved inorganic and total nitrogen in June, during the period of the summer phytoplankton minimum.

Keywords

Phytoplankton species composition Nutrients Monitoring Baltic Sea 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersson, A., S. Hajdu, P. Haecky, J. Kuparinen & J. Wikner, 1996. Succession and growth limitation of phytoplankton in the Gulf of Bothnia (Baltic Sea). Marine Biology 126: 791–801.CrossRefGoogle Scholar
  2. Bianchi, T. S., P. Westman, C. Rolff, E. Engelhaupt, T. Andrén & R. Elmgren, 2000. Cyanobacterial blooms in the Baltic Sea: natural or human induced? Limnology and Oceanography 45: 716–726.Google Scholar
  3. Borum, J., 1996. Shallow waters and land/sea boundaries. In Jørgensen, B. B. & K. Richardson (eds.), Eutrophication in Coastal Marine Ecosystems. American Geophysical Union, Washington: 179–203.Google Scholar
  4. Cadee, G. C., 1992. Trends in Marsdiep phytoplankton. Netherlands Journal of Sea Research 20: 143–149.Google Scholar
  5. Cederwall, H. & R. Elmgren, 1990. Biological effects of eutrophication in the Baltic Sea, particularly in the coastal zone. Ambio 19: 109–112.Google Scholar
  6. Clarke, K. R. & R. M. Warwick, 2001. Change in Marine Communities: an Approach to Statistical Analysis and Interpretation, 2nd Edn. Plymouth Marine Laboratory.Google Scholar
  7. Clarke, A. L., K. Weckström, D. J. Conley, & et al., 2006. Long-term trends in eutrophication and nutrients in the coastal zone. Limnology and Oceanography 51: 385–397.Google Scholar
  8. Cloern, J. E., 2001. Our evolving conceptual model of the coastal eutrophication problem. Marine Ecology Progress Series 210: 223–253.CrossRefGoogle Scholar
  9. Cooper, S. R., 1995. Chesapeake Bay historical land use: impact on water quality and diatom communities. Ecological Applications 5: 703–723.CrossRefGoogle Scholar
  10. European Communities, 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. Legislative acts and other instruments. ENV221 CODEC 513.Google Scholar
  11. Finni, T., K. Kononen, R. Olsonen & K. Wallström, 2001a. The history of cyanobacterial blooms in the Baltic Sea. Ambio 30: 172–178.Google Scholar
  12. Finni, T., S. Laurila & S. Laakkonen, 2001b. The history of eutrophication the sea area of Helsinki in the 20th century. Long-term analysis of plankton assemblages. Ambio 30:264–271.Google Scholar
  13. Gasiùnaite, Z. R., A. C. Cardoso, A.-S. Heiskanen, P. Henriksen, P. Kauppila, I. Olenina, R. Pilkaityte, I. Purina, A. Razinkovas, S. Sagert, H. Schubert & N. Wasmund, 2005. Seasonality of coastal phytoplankton in the Baltic Sea: influence of salinity and eutrophication. Estuarine, Coastal & Shelf Science 65: 239–252.CrossRefGoogle Scholar
  14. Gordon, H. R., D. K. Clark, J. W. Brown, O. B. Brown, R. H. Evans & W. W. Broenkow, 1983. Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison of ship determinations and CZCS estimates. Applied Optics 22: 20–36.CrossRefGoogle Scholar
  15. Guildford, S. J. & R. E. Hecky, 2000. Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: is there a common relationship? Limnology and Oceanography 45: 1213–1223.CrossRefGoogle Scholar
  16. Hajdu, S., S. Pertola & H. Kuosa, 2004. Prorocentrum minimum (Dinophyceae) in the Baltic Sea: morphology, occurrence—a review. Harmful Algae 4: 471–480.CrossRefGoogle Scholar
  17. Hällfors, G., 2004. Checklist of Baltic Sea Phytoplankton Species (including some heterotrophic protistan groups). Baltic Sea Environmental Proceedings 95, 210 pp.Google Scholar
  18. Heil, C. A., 2005. Influence of humic, fulvic and hydrophilic acids on the growth, photosynthesis and respiration of the dinoflagellate Prorocentrum minimum (Pavillard) Schiller. Harmful Algae 4: 603–618.CrossRefGoogle Scholar
  19. HELCOM, 1988. Guidelines for the Baltic Monitoring Programme for the third stage: Part D. Biological Determinands. Baltic Sea Environmental Proceedings 27D, 161 pp.Google Scholar
  20. Hillebrand, H., C.-D. Dürselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.CrossRefGoogle Scholar
  21. Hoyer, M. V., T. K. Frazer, S. K. Notestein & D. E. Canfield Jr., 2002. Nutrient, chlorophyll, and water clarity relationships in Florida’s nearshore coastal waters with comparisons to freshwater lakes. Canadian Journal of Fisheries and Aquatic Sciences 59: 1024–1031.CrossRefGoogle Scholar
  22. Jaanus, A., 2003. Water environment of Haapsalu Bay in retrospect (1975–2000). Proceedings of the Estonian Academy of Sciences. Ecology 52: 91–111.Google Scholar
  23. Kahru, M., U. Horstmann & O. Rud, 1994. Increased cyanobacterial blooming in the Baltic Sea detected by satellites: natural fluctuation or ecosystem change? Ambio 23: 469–472.Google Scholar
  24. Kononen, K., 1988. Phytoplankton summer assemblages in relation to environmental factors at the entrance to the Gulf of Finland during 1972–1985. Kieler Meeresforschungen 6(Sonderheft): 281–294.Google Scholar
  25. Kononen, K., 1992. Dynamics of the toxic cyanobacterial blooms in the Baltic Sea. Finnish Marine Research 261: 1–36.Google Scholar
  26. Kuosa, H., 1988. Observations on the taxonomy and ecology of Monoraphidium (Chlorophyceae, Chlorococcales) and Koliella (Chlorophyceae, Ulotrichales) species in the Tvärminne Sea area, SW coast of Finland. Archiv für Protistenkunde 135: 45–53.Google Scholar
  27. Kutser, T., 2004. Quantitative detection of chlorophyll in cyanobacterial blooms by satellite remote sensing. Limnology and Oceanography 49: 2179–2189.CrossRefGoogle Scholar
  28. Lagus, A., J. Suomela, G. Weithoff, K. Heikkilä, H. Helminen & J. Sipura, 2004. Species-specific differences in phytoplankton responses to N and P enrichments and the N:P ratio in the Archipelago Sea, northern Baltic Sea. Journal of Plankton Research 26: 779–798.CrossRefGoogle Scholar
  29. Lindholm, T. & C. Nummelin, 1999. Red tide of the dinoflagellate Heterocapsa triquetra (Dinophyta) in a ferry-mixed coastal inlet. Hydrobiologia 393: 245–251.CrossRefGoogle Scholar
  30. Marshall, H. G. & R. W. Alden, 1990. A comparison of phytoplankton assemblages and environmental relationships in three estuarine rivers of the lower Chesapeake Bay. Estuaries 13: 287–300.CrossRefGoogle Scholar
  31. Millie, D. F., H. W. Pearl & J. P. Hurley, 1993. Microalgal pigment assessments using high-performance liquid chromatography: a synopsis of organismal and ecological applications. Canadian Journal of Fisheries and Aquatic Sciences 50: 2513–2527.CrossRefGoogle Scholar
  32. Niemi, Å., 1979. Blue-green algal blooms and N:P ratio in the Baltic Sea. Acta Botanica Fennica 110: 57–61.Google Scholar
  33. Niemi, Å. & G. Hällfors, 1974. Some phytoplankton species from Baltic waters. Memoranda Societatis pro Fauna et Flora Fennica 49: 77–93.Google Scholar
  34. Nixdorf, B., U. Mischke & J. Rücker, 2003. Phytoplankton assemblages and steady state in deep and shallow eutrophic lakes—an approach to differentiate the habitat properties of Oscillatoriales. Hydrobiologia 502: 111–121.CrossRefGoogle Scholar
  35. Olli, K. & J. Seppälä, 2001. Vertical niche separation of phytoplankton: large-scale mesocosm experiments. Marine Ecology Progress Series 217: 219–233.CrossRefGoogle Scholar
  36. Olli, K., A.-S. Heiskanen & J. Seppälä, 1996. Development and fate of Eutreptiella gymnastica bloom in nutrient-enriched enclosures in the coastal Baltic Sea. Journal of Plankton Research 18: 1587–1604.CrossRefGoogle Scholar
  37. Paerl, H. W., L. M. Valdes, B. L. Peierls, J. E. Adolf & L. W. Harding Jr., 2006. Anthropogenic and climatic influences on the eutrophication of large estuarine ecosystems. Limnology and Oceanography 51: 448–462.CrossRefGoogle Scholar
  38. Painting, S. J., M. J. Devlin, S. I. Rogers, D. K. Mills, E. R. Parker & H. L. Rees, 2005. Assessing the suitability of OSPAR EcoQOs for eutrophication vs ICES criteria for England and Wales. Marine Pollution Bulletin 50: 1569–1584.CrossRefGoogle Scholar
  39. Pertola, S., H. Kuosa & R. Olsonen, 2004. Is the invasion of Prorocentrum minimum (Dinophyceae) related to the nitrogen enrichment of the Baltic Sea? Harmful Algae 4: 481–492.CrossRefGoogle Scholar
  40. Rantajärvi, E., V. Gran, S. Hällfors & R. Olsonen, 1997. Effects of environmental factors on the phytoplankton community in the Gulf of Finland—unattended high frequency measurements and multivariate analyses. Hydrobiologia 363: 127–139.CrossRefGoogle Scholar
  41. Rogers, S. I. & B. Greenaway, 2005. A UK perspective on the development of marine ecosystem indicators. Marine Pollution Bulletin 50: 9–19.CrossRefGoogle Scholar
  42. Smith, V. H., 2006. Responses of estuarine and coastal marine phytoplankton to nitrogen and phosphorus enrichment. Limnology and Oceanography 51: 377–384.CrossRefGoogle Scholar
  43. Söderström, J., 1996. The significance of observed nutrient concentrations in the discussion about nitrogen and phosphorus as limiting nutrients for the primary carbon flux in coastal water ecosystems. Sarsia 81: 81–96.Google Scholar
  44. Tomas, C. (ed.), 1997. Identifying Marine Phytoplankton. Academic Press, London.Google Scholar
  45. Turner, R. E., N. N. Rabalais, B. Fry, N. Atilla, C. S. Milan, J. M. Lee, C. Normandeau, T. A. Oswald, E. M. Swenson & D. A. Tomasko, 2006. Paleo-indicators and water quality change in the Charlotte Harbor estuary (Florida). Limnology and Oceanography 51: 518–533.CrossRefGoogle Scholar
  46. Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplanktonmethodik. Mitteilungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 9: 1–38.Google Scholar
  47. Vuorio, K., A. Lagus, J. M. Lehtimäki, J. Suomela & H. Helminen, 2005. Phytoplankton community responses to nutrient and iron enrichment under different nitrogen to phosphorus ratios in the northern Baltic Sea. Journal of Experimental Marine Biology and Ecology 322: 39–52.CrossRefGoogle Scholar
  48. Wänstrand, I. & P. Snoeijs, 2006. Phytoplankton community dynamics assessed by ships-of-opportunity sampling in the northern Baltic Sea: a comparison of HPLC pigment analysis and cell counts. Estuarine, Coastal and Shelf Science 66: 135–146.CrossRefGoogle Scholar
  49. Wasmund, N., A. Andrushaitis, E. Łysiak-Pastuszak, B. Müller-Karulis, G. Nausch, T. Neumann, H. Ojaveer, I. Olenina, L. Postel & Z. Witek, 2001. Trophic status of the Southeastern Baltic Sea: a comparison of coastal and open areas. Estuarine, Coastal and Shelf Science 53: 849–864.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Andres Jaanus
    • 1
  • Kaire Toming
    • 1
  • Seija Hällfors
    • 2
  • Kaire Kaljurand
    • 1
  • Inga Lips
    • 3
  1. 1.Estonian Marine InstituteUniversity of TartuTallinnEstonia
  2. 2.Marine Research CentreFinnish Environment InstituteHelsinkiFinland
  3. 3.Marine Systems InstituteTallinn University of TechnologyTallinnEstonia

Personalised recommendations