Aneuploidy in Embryonic Stem Cells

  • Rafaela C. Sartore
  • Priscila B. Campos
  • Michael J. McConnell
  • Stevens K. RehenEmail author


Aneuploidy is defined as the loss and/or gain of chromosomes to produce a numerical deviation from multiples of the haploid chromosomal complement. This phenomenon can be classified as a net increase in chromosome number, referred to as hyperploidy, or a net decrease, referred to as hypoploidy. Biologically, chromosome number can range from 0 (red blood cells) to polyploidy (hepatocytes, neoplasms). Human embryonic stem cells (hES) have great potential for use in both basic science and therapeutic strategies, including transplantation for regenerative medicine. A challenge for cell therapy using hES is the maintenance of stable cell lines, particularly following extended passaging. Chromosomal instability has recently been reported in hES, resulting from clonal expansion of aneuploid cells. It includes hyperploidies, particularly trisomies of chromosomes 12, 17 or 20 and, to a lesser extent, chromosome loss. The generality of this phenomenon is uncertain and it is currently unclear whether aneuploidy in stem cell lines is in fact deleterious. What is the physiological significance or therapeutic risk associated with hES aneuploidy? Here, features of cell cycle and the relevance of aneuploidy are discussed on regard of its implications for the physiology and therapeutic purposes of embryonic stem cells.


Aneuploidy Cancer stem cells Cell cycle checkpoint Embryonic stem cells Genome integrity 



Alzheimer’s disease


anaphase promoting complex-cyclosome


ataxia telangiectasia-mutated protein kinase


Budding Uninhibited by Benzimidazole


cancer stem cell(s)


Cell division control protein


Checkpoint kinase


Cyclin-dependent kinase activity


Cyclin Kinase Inhibitors


deoxyribonucleotide triphosphate(s)


Embryoid Bodies

EC cell(s)

Embryonal Carcinoma cell(s)

ES cell(s)

Embryonic Stem cell(s)


Fluorescence In Situ Hybridization

G phases

Gap phases


Retinoblastoma protein


In Vitro Fertilization


mouse embryonic fibroblast(s)


Microtubule-dependent motor centromere-associated protein E


Mitogen-activated protein kinase 1

M phase

Mitosis phase


Mitotic arrest deficient


Mosaic Variegated Aneuploidy


neural progenitor cell(s)


Octamer-binding transcription factor 4


p19 alternative reading frame protein


Spindle Assembly Checkpoint


Stage-Specific Embryonic Antigen 1

S phase

Synthesis phase


(53 kilodalton) tumor suppressor protein



We thank Stacie Ngo Abdalla for manuscript editing. This work was supported by grants from Faperj – Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (S.R.), CNPq – Conselho Nacional para o Desenvolvimento Científico e Tecnológico (R.S., P.B., S.R.), Pew Latin American Program in Biomedical Sciences (S.R.) and Brazilian Ministry of Health/DECIT (S.R.).


  1. Akimov SS, Ramezani A, Hawley TS, Hawley RG (2005) Bypass of senescence, immortalization, and transformation of human hematopoietic progenitor cells. Stem Cells 23:1423–1433.CrossRefPubMedGoogle Scholar
  2. Aladjem MI, Spike BT, Rodewald LW, Hope TJ, Klemm M, Jaenisch R, Wahl GM (1998) ES cells do not activate p53-dependent stress responses and undergo p53-independent apoptosis in response to DNA damage. Curr Biol 8:145–155.CrossRefPubMedGoogle Scholar
  3. Ambartsumyan G, Clark AT (2008) Aneuploidy and early human embryo development. Hum Mol Genet 17:R10–R15.CrossRefPubMedGoogle Scholar
  4. Aubert G, Lansdorp PM (2008) Telomeres and aging. Physiol Rev 88:557–579.CrossRefPubMedGoogle Scholar
  5. Baker DE, Harrison NJ, Maltby E, Smith K, Moore HD, Shaw PJ, Heath PR, Holden H, Andrews PW (2007) Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nat Biotechnol 25:207–215.CrossRefPubMedGoogle Scholar
  6. Bito T, Ueda M, Ito A, Ichihashi M (1997) Less expression of cyclin E in cutaneous squamous cell carcinomas than in benign and premalignant keratinocytic lesions. J Cutan Pathol 24:305–308.CrossRefPubMedGoogle Scholar
  7. Blasco MA, Lee HW, Hande MP, Samper E, Lansdorp PM, DePinho RA, Greider CW (1997) Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91:25–34.CrossRefPubMedGoogle Scholar
  8. Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279:349–352.CrossRefPubMedGoogle Scholar
  9. Boveri T (1902) Über mehrpolige Mitosen als Mittel zur Analyse des Zellkerns. Verhandlungen der physikalisch-medizinischen Gesellschaft zu Würzburg 35:37–90.Google Scholar
  10. Catalina P, Montes R, Ligero G, Sanchez L, Cueva TD, Bueno C, Leone PE, Menendez P (2008) Human ESCs predisposition to karyotypic instability: Is a matter of cell culture adaptation or differential vulnerability among hESC lines due to inherent properties? Mol Cancer 7:76–76.CrossRefPubMedGoogle Scholar
  11. Chan EM, Yates F, Boyer LF, Schlaeger TM, Daley GQ (2008) Enhanced plating efficiency of trypsin-adapted human embryonic stem cells is reversible and independent of trisomy 12/17. Cloning Stem Cells 10:107–118.CrossRefPubMedGoogle Scholar
  12. Damelin M, Bestor TH (2007) The decatenation checkpoint. Br J Cancer 96:201–205.CrossRefPubMedGoogle Scholar
  13. Damelin M, Sun YE, Sodja VB, Bestor TH (2005) Decatenation checkpoint deficiency in stem and progenitor cells. Cancer Cell 8:479–484.CrossRefPubMedGoogle Scholar
  14. Duesberg P, Li R, Fabarius A, Hehlmann R (2005) The chromosomal basis of cancer. Cell Oncol 27:293–318.PubMedGoogle Scholar
  15. Dutta A, Chandra R, Leiter LM, Lester S (1995) Cyclins as markers of tumor proliferation: immunocytochemical studies in breast cancer. Proc Natl Acad Sci USA 92: 5386–5390.CrossRefPubMedGoogle Scholar
  16. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156.CrossRefPubMedGoogle Scholar
  17. Faast R, White J, Cartwright P, Crocker L, Sarcevic B, Dalton S (2004) Cdk6-cyclin D3 activity in murine ES cells is resistant to inhibition by p16(INK4a). Oncogene 23:491–502.CrossRefPubMedGoogle Scholar
  18. Fluckiger AC, Marcy G, Marchand M, Negre D, Cosset FL, Mitalipov S, Wolf D, Savatier P, Dehay C (2006) Cell cycle features of primate embryonic stem cells. Stem Cells 24:547–556.CrossRefPubMedGoogle Scholar
  19. Frumkin T, Malcov M, Yaron Y, Ben-Yosef D (2008) Elucidating the origin of chromosomal aberrations in IVF embryos by preimplantation genetic analysis. Mol Cell Endocrinol 282:112–119.CrossRefPubMedGoogle Scholar
  20. Geller LN, Potter H (1999) Chromosome missegregation and trisomy 21 mosaicism in Alzheimer’s disease. Neurobiol Dis 6:167–179.CrossRefPubMedGoogle Scholar
  21. Gertow K, Cedervall J, Unger C, Szoke K, Blennow E, Imreh MP, Ahrlund-Richter L (2007) Trisomy 12 in HESC leads to no selective in vivo growth advantage in teratomas, but induces an increased abundance of renal development. J Cell Biochem 100:1518–1525.CrossRefPubMedGoogle Scholar
  22. Gey GO, Coffman W, Kubicek MT (1952) Tissue culture studies of the growth properties of cervical carcinoma and normal epithelium. Cancer Res 12:264–265.Google Scholar
  23. Gonzalez-Merino E, Emiliani S, Vassart G, Van den Bergh M, Vannin AS, Abramowicz M, Delneste D, Englert Y (2003) Incidence of chromosomal mosaicism in human embryos at different developmental stages analyzed by fluorescence in situ hybridization. Genet Test 7:85–95.CrossRefPubMedGoogle Scholar
  24. Griffin DK (1996) The incidence, origin, and etiology of aneuploidy. Int Rev Cytol 167:263–296.CrossRefPubMedGoogle Scholar
  25. Grover JW (1961) The enzymatic dissociation and reproducible reaggregation in vitro of 11-day embryonic chick lung. Dev Biol 3:555–568.CrossRefPubMedGoogle Scholar
  26. Gurdon JB, Bourillot PY (2001) Morphogen gradient interpretation. Nature 413:797–803.CrossRefPubMedGoogle Scholar
  27. Hasle H, Clemmensen IH, Mikkelsen M (2000) Risks of leukaemia and solid tumours in individuals with Down’s syndrome. Lancet 355:165–169.CrossRefPubMedGoogle Scholar
  28. Hassold T, Chen N, Funkhouser J, Jooss T, Manuel B, Matsuura J, Matsuyama A, Wilson C, Yamane JA, Jacobs PA (1980) A cytogenetic study of 1000 spontaneous abortions. Ann Hum Genet 44:151–178.CrossRefPubMedGoogle Scholar
  29. Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621.CrossRefGoogle Scholar
  30. Hernando E, Nahlé Z, Juan G, Diaz-Rodriguez E, Alaminos M, Hemann M, Michel L, Mittal V, Gerald W, Benezra R, Lowe SW, Cordon-Cardo C (2004) Rb inactivation promotes genomic instability by uncoupling cell cycle progression from mitotic control. Nature 430:797–802.CrossRefPubMedGoogle Scholar
  31. Hong Y, Stambrook PJ (2004) Restoration of an absent G1 arrest and protection from apoptosis in embryonic stem cells after ionizing radiation. Proc Natl Acad Sci USA 101:14443–14448.CrossRefPubMedGoogle Scholar
  32. Hubalek MM, Widschwendter A, Erdel M, Gschwendtner A, Fiegl HM, Müller HM, Goebel G, Mueller-Holzner E, Marth C, Spruck CH, Reed SI, Widschwendter M (2004) Cyclin E dysregulation and chromosomal instability in endometrial cancer. Oncogene 23:4187–4192.CrossRefPubMedGoogle Scholar
  33. Hunter A (2003) High risk of malignancy in mosaic variegated aneuploidy syndrome. Am J Med Genet 117A:199–199.CrossRefPubMedGoogle Scholar
  34. Ikeuchi T, Yang ZQ, Wakamatsu K, Kajii T (2004) Induction of premature chromatid separation (PCS) in individuals with PCS trait and in normal controls. Am J Med Genet 127A:128–132.CrossRefPubMedGoogle Scholar
  35. Jacquemont S, Boceno M, Rival JM, Mechinaud F, David A (2002) High risk of malignancy in mosaic variegated aneuploidy syndrome. Am J Med Genet 109:17–21.CrossRefPubMedGoogle Scholar
  36. Kajii T, Ikeuchi T, Yang ZQ, Nakamura Y, Tsuji Y, Yokomori K, Kawamura M, Fukuda S, Horita S, Asamoto A (2001) Cancer-prone syndrome of mosaic variegated aneuploidy and total premature chromatid separation: report of five infants. Am J Med Genet 104:57–64.CrossRefPubMedGoogle Scholar
  37. Kalousek DK (2000) Pathogenesis of chromosomal mosaicism and its effect on early human development. Am J Med Genet 91:39–45.CrossRefPubMedGoogle Scholar
  38. Kalousek DK, Dill FJ (1983) Chromosomal mosaicism confined to the placenta in human conceptions. Science 221:665–667.CrossRefPubMedGoogle Scholar
  39. Kalousek DK, Vekemans M (1996) Confined placental mosaicism. J Med Genet 33:529–533.CrossRefPubMedGoogle Scholar
  40. Kaushal D, Contos JJ, Treuner K, Yang AH, Kingsbury MA, Rehen SK, McConnell MJ, Okabe M, Barlow C, Chun J (2003) Alteration of gene expression by chromosome loss in the postnatal mouse brain. J Neurosci 23:5599–5606.PubMedGoogle Scholar
  41. Keyomarsi K, Conte D Jr, Toyofuku W, Fox MP (1995) Deregulation of cyclin E in breast cancer. Oncogene 11:941–950.PubMedGoogle Scholar
  42. Kingsbury MA, Friedman B, McConnell MJ, Rehen SK, Yang AH, Kaushal D, Chun J (2005) Aneuploid neurons are functionally active and integrated into brain circuitry. Proc Natl Acad Sci USA 102:6143–6147.CrossRefPubMedGoogle Scholar
  43. Kranenburg O, de Groot RP, Van der Eb AJ, Zantema A (1995) Differentiation of P19 EC cells leads to differential modulation of cyclin-dependent kinase activities and to changes in the cell cycle profile. Oncogene 10:87–95.PubMedGoogle Scholar
  44. Lew DJ, Burke DJ (2003) The spindle assembly and spindle position checkpoints. Annu Rev Genet 37:251–282.CrossRefPubMedGoogle Scholar
  45. Li J, Xu M, Zhou H, Ma J, Potter H (1997) Alzheimer presenilins in the nuclear membrane, interphase kinetochores, and centrosomes suggest a role in chromosome segregation. Cell 90:917–927.CrossRefPubMedGoogle Scholar
  46. Lin T, Chao C, Saito S, Mazur SJ, Murphy ME, Appella E, Xu Y (2005) p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat Cell Biol 7:165–171.CrossRefPubMedGoogle Scholar
  47. Linke SP, Clarkin KC, Di Leonardo A, Tsou A, Wahl GM (1996) A reversible, p53-dependent G0/G1 cell cycle arrest induced by ribonucleotide depletion in the absence of detectable DNA damage. Genes Dev 10:934–947.CrossRefPubMedGoogle Scholar
  48. Liu X, Wu H, Loring J, Hormuzdi S, Disteche CM, Bornstein P, Jaenisch R (1997) Trisomy eight in ES cells is a common potential problem in gene targeting and interferes with germ line transmission. Dev Dyn 209:85–91.CrossRefPubMedGoogle Scholar
  49. Mac Auley A, Werb Z, Mirkes PE (1993) Characterization of the unusually rapid cell cycles during rat gastrulation. Development 117:873–883.PubMedGoogle Scholar
  50. Maitra A, Arking DE, Shivapurkar N, Ikeda M, Stastny V, Kassauei K, Sui G, Cutler DJ, Liu Y, Brimble SN, Noaksson K, Hyllner J, Schulz TC, Zeng X, Freed WJ, Crook J, Abraham S, Colman A, Sartipy P, Matsui S, Carpenter M, Gazdar AF, Rao M, Chakravarti A (2005) Genomic alterations in cultured human embryonic stem cells. Nat Genet 37:1099–1103.CrossRefPubMedGoogle Scholar
  51. Manchester KL (1995) Theodor Boveri and the origin of malignant tumours. Trends Cell Biol 5:384–387.CrossRefPubMedGoogle Scholar
  52. Mantel C, Guo Y, Lee MR, Kim MK, Han MK, Shibayama H, Fukuda S, Yoder MC, Pelus LM, Kim KS, Broxmeyer HE (2007) Checkpoint-apoptosis uncoupling in human and mouse embryonic stem cells: a source of karyotpic instability. Blood 109:4518–4527.CrossRefPubMedGoogle Scholar
  53. Maynard S, Swistowska AM, Lee JW, Liu Y, Liu ST, Da Cruz AB, Rao M, de Souza-Pinto NC, Zeng X, Bohr VA (2008) Human embryonic stem cells have enhanced repair of multiple forms of DNA damage. Stem Cells 26:2266–2274.CrossRefPubMedGoogle Scholar
  54. Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S (2003) The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113:631–642.CrossRefPubMedGoogle Scholar
  55. Miura M, Miura Y, Padilla-Nash HM, Molinolo AA, Fu B, Patel V, Seo BM, Sonoyama W, Zheng JJ, Baker CC, Chen W, Ried T, Shi S (2006) Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation. Stem Cells 24:1095–1103.CrossRefPubMedGoogle Scholar
  56. Mummery CL, van den Brink CE, de Laat SW (1987a) Commitment to differentiation induced by retinoic acid in P19 embryonal carcinoma cells is cell cycle dependent. Dev Biol 121:10–19.CrossRefPubMedGoogle Scholar
  57. Mummery CL, van Rooijen MA, van den Brink SE, de Laat SW (1987b) Cell cycle analysis during retinoic acid induced differentiation of a human embryonal carcinoma-derived cell line. Cell Differ 20:153–160.CrossRefPubMedGoogle Scholar
  58. Musacchio A, Salmon ED (2007) The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol 8:379–393.CrossRefPubMedGoogle Scholar
  59. Neganova I, Lako M (2008) G1 to S phase cell cycle transition in somatic and embryonic stem cells. J Anat 213:30–44.CrossRefPubMedGoogle Scholar
  60. Nyberg KA, Michelson RJ, Putnam CW, Weinert TA (2002) Toward maintaining the genome: DNA damage and replication checkpoints. Annu Rev Genet 36:617–656.CrossRefPubMedGoogle Scholar
  61. Park JI, Yoshida I, Tada T, Takagi N, Takahashi Y, Kanagawa H (1998) Trisomy 8 does not affect differentiative potential in a murine parthenogenetic embryonic stem cell line. Jpn J Vet Res 46:29–35.PubMedGoogle Scholar
  62. Pathak S (1995) Centromere or telomere: who is the boss? Anticancer Res 15:2549–2550.PubMedGoogle Scholar
  63. Pathak S, Multani AS, Furlong CL, Sohn SH (2002) Telomere dynamics, aneuploidy, stem cells, and cancer (review). Int J Oncol 20:637–641.PubMedGoogle Scholar
  64. Plentz RR, Schlegelberger B, Flemming P, Gebel M, Kreipe H, Manns MP, Rudolph KL, Wilkens L (2005) Telomere shortening correlates with increasing aneuploidy of chromosome 8 in human hepatocellular carcinoma. Hepatology 42:522–526.CrossRefPubMedGoogle Scholar
  65. Potter H (1991) Review and hypothesis: Alzheimer disease and Down syndrome––chromosome 21 nondisjunction may underlie both disorders. Am J Hum Genet 48:1192–1200.PubMedGoogle Scholar
  66. Rajaraman R, Guernsey DL, Rajaraman MM, Rajaraman SR (2006) Stem cells, senescence, neosis and self-renewal in cancer. Cancer Cell Int 6:25–25.CrossRefPubMedGoogle Scholar
  67. Rane SG, Reddy EP (2000) Cell cycle control of pancreatic beta cell proliferation. Front Biosci 5:D1–D19.CrossRefPubMedGoogle Scholar
  68. Rasnick D, Duesberg PH (1999) How aneuploidy affects metabolic control and causes cancer. Biochem J 340:621–630.CrossRefPubMedGoogle Scholar
  69. Rebuzzini P, Neri T, Mazzini G, Zuccotti M, Redi CA, Garagna S (2008) Karyotype analysis of the euploid cell population of a mouse embryonic stem cell line revealed a high incidence of chromosome abnormalities that varied during culture. Cytogenet Genome Res 121: 18–24.CrossRefPubMedGoogle Scholar
  70. Rehen SK, McConnell MJ, Kaushal D, Kingsbury MA, Yang AH, Chun J (2001) Chromosomal variation in neurons of the developing and adult mammalian nervous system. Proc Natl Acad Sci USA 98:13361–13366.CrossRefPubMedGoogle Scholar
  71. Rehen SK, Yung YC, McCreight MP, Kaushal D, Yang AH, Almeida BS, Kingsbury MA, Cabral KM, McConnell MJ, Anliker B, Fontanoz M, Chun J (2005) Constitutional aneuploidy in the normal human brain. J Neurosci 25:2176–2180.CrossRefPubMedGoogle Scholar
  72. Resnick JL, Bixler LS, Cheng L, Donovan PJ (1992) Long-term proliferation of mouse primordial germ cells in culture. Nature 359:550–551.CrossRefPubMedGoogle Scholar
  73. Rolig RL, McKinnon PJ (2000) Linking DNA damage and neurodegeneration. Trends Neurosci 23:417–424.CrossRefPubMedGoogle Scholar
  74. Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 73:39–85.CrossRefPubMedGoogle Scholar
  75. Saretzki G, Armstrong L, Leake A, Lako M, von Zglinicki T (2004) Stress defense in murine embryonic stem cells is superior to that of various differentiated murine cells. Stem Cells 22:962–971.CrossRefPubMedGoogle Scholar
  76. Satge D, Sasco AJ, Lacour B (2003) Are solid tumours different in children with Down’s syndrome? Int J Cancer 106:297–298.CrossRefPubMedGoogle Scholar
  77. Satzinger H (2008) Theodor and Marcella Boveri: chromosomes and cytoplasm in heredity and development. Nat Rev Genet 9:231–238.CrossRefPubMedGoogle Scholar
  78. Savatier P, Lapillonne H, van Grunsven LA, Rudkin BB, Samarut J (1996) Withdrawal of differentiation inhibitory activity/leukemia inhibitory factor up-regulates D-type cyclins and cyclin-dependent kinase inhibitors in mouse embryonic stem cells. Oncogene 12:309–322.PubMedGoogle Scholar
  79. Schwartz GK, Shah MA (2005) Targeting the cell cycle: a new approach to cancer therapy. J Clin Oncol 23:9408–9421.CrossRefPubMedGoogle Scholar
  80. Spruck CH, Won KA, Reed SI (1999) Deregulated cyclin E induces chromosome instability. Nature 401: 297–300.CrossRefPubMedGoogle Scholar
  81. Stead E, White J, Faast R, Conn S, Goldstone S, Rathjen J, Dhingra U, Rathjen P, Walker D, Dalton S (2002) Pluripotent cell division cycles are driven by ectopic Cdk2, cyclin A/E and E2F activities. Oncogene 21:8320–8333.CrossRefPubMedGoogle Scholar
  82. Sugawara A, Goto K, Sotomaru Y, Sofuni T, Ito T (2006) Current status of chromosomal abnormalities in mouse embryonic stem cell lines used in Japan. Comp Med 56:31–34.PubMedGoogle Scholar
  83. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147.CrossRefPubMedGoogle Scholar
  84. Thomson A, Wojtacha D, Hewitt Z, Priddle H, Sottile V, Di Domenico A, Fletcher J, Waterfall M, Corrales NL, Ansell R, McWhir J (2008) Human embryonic stem cells passaged using enzymatic methods retain a normal karyotype and express CD30. Cloning Stem Cells 10:89–106.CrossRefPubMedGoogle Scholar
  85. Torres EM, Williams BR, Amon A (2008) Aneuploidy: cells losing their balance. Genetics 179:737–746.CrossRefPubMedGoogle Scholar
  86. Van den Heuvel S (2005) Cell-cycle regulation. Worm Book Sep 21:1–16.Google Scholar
  87. Weaver BA, Bonday ZQ, Putkey FR, Kops GJ, Silk AD, Cleveland DW (2003) Centromere-associated protein-E is essential for the mammalian mitotic checkpoint to prevent aneuploidy due to single chromosome loss. J Cell Biol 162:551–563.CrossRefPubMedGoogle Scholar
  88. Weaver BA, Silk AD, Cleveland DW (2008) Low rates of aneuploidy promote tumorigenesis while high rates of aneuploidy cause cell death and tumor suppression. Cell Oncol 30:453.PubMedGoogle Scholar
  89. Weaver BA, Silk AD, Montagna C, Verdier-Pinard P, Cleveland DW (2007) Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell 11:25–36.CrossRefPubMedGoogle Scholar
  90. White J, Stead E, Faast R, Conn S, Cartwright P, Dalton S (2005) Developmental activation of the Rb-E2F pathway and establishment of cell cycle-regulated cyclin-dependent kinase activity during embryonic stem cell differentiation. Mol Biol Cell 16:2018–2027.CrossRefPubMedGoogle Scholar
  91. Wicha MS, Liu S, Dontu G (2006) Cancer stem cells: an old idea – a paradigm shift. Cancer Res 66:1883–1890; discussion 1895–1886.CrossRefPubMedGoogle Scholar
  92. Williams BR, Prabhu VR, Hunter KE, Glazier CM, Whittaker CA, Housman DE, Amon A (2008) Aneuploidy affects proliferation and spontaneous immortalization in mammalian cells. Science 322:703–709.CrossRefPubMedGoogle Scholar
  93. Yang AH, Kaushal D, Rehen SK, Kriedt K, Kingsbury MA, McConnell MJ, Chun J (2003) Chromosome segregation defects contribute to aneuploidy in normal neural progenitor cells. J Neurosci 23:10454–10462.PubMedGoogle Scholar
  94. Zuber MA, Koschny R, Koschny T, Froster UG (2002) Gain of chromosome 7 detected by comparative genomic hybridization accumulates with age in patients with glioblastoma multiforme. Cancer Genet Cytogenet 136:92–94.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Rafaela C. Sartore
    • 1
  • Priscila B. Campos
    • 1
  • Michael J. McConnell
    • 2
  • Stevens K. Rehen
    • 1
    Email author
  1. 1.Instituto de Ciências BiomédicasUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Crick-Jacobs Center for Theoretical and Computational BiologySalk Institute for Biological StudiesLa JollaUSA

Personalised recommendations