Isoscapes pp 139-160 | Cite as

Statistical and Geostatistical Mapping of Precipitation Water Isotope Ratios

Chapter

Abstract

More than 5 decades of monitoring has documented wide and systematic variation in the stable isotopic composition of precipitation across the globe. This variation is controlled by climatological processes that govern the source, transport and precipitation of atmospheric moisture. Given the ordered and spatially continuous nature of these processes, variation in precipitation isotopic composition represents a near-ideal system for spatial analysis using geostatistical methods. Spatial analysis of precipitation isotopic composition has a long history, and a wide range of methodologies have been applied to the problem of mapping and predicting isotopic compositions at scales ranging from 102 to 104 km. These range from basic space-only interpolation approaches to more quantitative regression and coupled geostatistical/regression techniques, each with particular benefits and drawbacks. Within the last decade, improved methods for generating quantitative predictions of precipitation isotope ratio distributions and the widespread dissemination of precipitation isoscapes via the world wide web have help spur the development of numerous applications of these data products in climatology, hydrology, ecology, and forensics. Current and future research emphasis on continued improvements in water isotope ratio monitoring and novel isoscapes model parameterizations should help lead to the development of dynamic precipitation isoscapes, incorporating both spatial and temporal variation, and enable new research and applications.

References

  1. Birks SJ, Gibson JJ, Gourcy L, Aggarwal PK and Edwards TWD (2002) Maps and animations offer new opportunities for studying the global water cycle. Eos Trans. AGU (electronic supplement) 83. http://www.agu.org/eos_elec/020082e.html
  2. Bowen GJ (2008) Spatial analysis of the intra-annual variation of precipitation isotope ratios and its climatological corollaries. J Geophys Res 113:D05113. doi:10.1029/2007JD009295 CrossRefGoogle Scholar
  3. Bowen GJ, Ehleringer JR, Chesson LA, Stange E, Cerling TE (2007) Stable isotope ratios of tap water in the contiguous USA. Water Resour Res 43:W03419. doi:10.1029/2006wr005186 CrossRefGoogle Scholar
  4. Bowen GJ, Revenaugh J (2003) Interpolating the isotopic composition of modern meteoric precipitation. Water Resour Res 39:1299. doi:10.1029/2003WR002086 CrossRefGoogle Scholar
  5. Bowen GJ, Wassenaar LI, Hobson KA (2005) Global application of stable hydrogen and oxygen isotopes to wildlife forensics. Oecologia 143:337–348. doi:10.1007/s00442-004-1813-y CrossRefGoogle Scholar
  6. Bowen GJ, Wilkinson B (2002) Spatial distribution of δ18O in meteoric precipitation. Geology 30:315–318CrossRefGoogle Scholar
  7. Burnett AW, Mullins HT, Patterson WP (2004) Relationship between atmospheric circulation and winter precipitation δ18O in central New York State. Geophys Res Lett 31:L22209. doi:10.1029/2004GL021089: 1–4CrossRefGoogle Scholar
  8. Craig H, Gordon LI (1965) Deuterium and oxygen-18 variations in the ocean and the marine atmosphere. In: Tongiorgi E (ed) Proceedings of a conference on stable isotopes in oceanographic studies and paleotemperatures. Spoleto, ItalyGoogle Scholar
  9. Cressie NAC (1993) Statistics for spatial data. Wiley, New York, p 900 ppGoogle Scholar
  10. Cressman GP (1959) An operative objective analysis system. Mon Weather Rev 87:367–374CrossRefGoogle Scholar
  11. Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468CrossRefGoogle Scholar
  12. Dutton A, Wilkinson BH, Welker JM, Bowen GJ, Lohmann KC (2005) Spatial distribution and seasonal variation in 18O/16O of modern precipitation and river water across the conterminous United States. Hydrol Process 19:4121–4146. doi:10.1002/hyp. 5876CrossRefGoogle Scholar
  13. Farquhar GD et al (1993) Vegetation effects on the isotope composition of oxygen in atmospheric CO2. Nature 363:439–443CrossRefGoogle Scholar
  14. Fekete BM, Gibson JJ, Aggarwal P, Vorosmarty CJ (2006) Application of isotope tracers in continental scale hydrological modeling. J Hydrol 330:444–456. doi:10.1016/j.jhydrol.2006.04.029 CrossRefGoogle Scholar
  15. Friedman I, Smith GI, Johnson CA, Moscati RJ (2002) Stable isotope compositions of waters in the Great Basin, United States – 2. Modern precipitation. J Geophys Res 107:4401. doi:10.1029/2001JD000566 CrossRefGoogle Scholar
  16. Gat JR, Bowser CJ, Kendall C (1994) The contribution of evaporation from the Great Lakes to the continental atmosphere; estimate based on stable isotope data. Geophys Res Lett 21:557–560CrossRefGoogle Scholar
  17. Gat JR et al (2003) Isotope composition of air moisture over the Mediterranean Sea: an index of the air–sea interaction pattern. Tellus 55B:953–965Google Scholar
  18. Gibson JJ et al (2005) Progress in isotope tracer hydrology in Canada. Hydrolog Process 19:303–327CrossRefGoogle Scholar
  19. Hendricks MB, DePaolo DJ, Cohen RC (2000) Space and time variation of δ18O and δD in precipitation: can paleotemperature be estimated from ice cores? Global Biogeochem Cycles 14:851–861CrossRefGoogle Scholar
  20. IAEA (1992) Statistical treatment of data on environmental isotopes in precipitation. IAEA, Vienna, p 781 ppGoogle Scholar
  21. IAEA (2001) GNIP Maps and Animations. http://isohis.iaea.org
  22. IAEA/WMO (2004) Global network for isotopes in precipitation, the GNIP database. http://www-naweb.iaea.org/napc/ih/GNIP/IHS_GNIP.html
  23. Ingraham NL, Taylor BE (1991) Light stable isotope systematics of large-scale hydrologic regimes in California and Nevada. Water Resour Res 27:77–90CrossRefGoogle Scholar
  24. Jacob H, Sonntag C (1991) An 8-year record of the seasonal variation of 2H and 18O in atmospheric water vapour and precipitation at Heidelberg, Germany. Tellus 43B:291–300Google Scholar
  25. Jouzel J, Merlivat L (1984) Deuterium and oxygen 18 in precipitation: modelling of the isotopic effects during snow formation. J Geophys Res 89:11749–11757CrossRefGoogle Scholar
  26. Kurita N, Yoshida N, Inoue G, Chayanova EA (2004) Modern isotope climatology of Russia: a first assessment. J Geophys Res 109:D03102. doi:10.1029/2003JD003404 CrossRefGoogle Scholar
  27. Lawrence JR et al. (2004) Stable isotopic composition of water vapor in the tropics. J Geophys Res 109. DOI 10.1029/2003JD004046Google Scholar
  28. Lee J-E, Fung I (2007) “Amount effect” of water isotopes and quantitative analysis of post-condensation processes. Hydrol Process. doi:10.1002/hyp. 6637Google Scholar
  29. Lykoudis SP, Argiriou AA (2007) Gridded data set of the stable isotopic composition of precipitation over the eastern and central Mediterranean. J Geophys Res 112:D18107. doi:10.1029/2007JD008472 CrossRefGoogle Scholar
  30. Masson-Delmotte V et al (2008) A review of Antarctic surface snow isotopic composition: observations, atmospheric circulation, and isotopic modeling. J Clim 21:3359–3387. doi:10.1175/2007JCLI2139.1 CrossRefGoogle Scholar
  31. Meehan TD, Giermakowski JT, Cryan PM (2004) GIS-based model of stable hydrogen isotope ratios in North American growing-season precipitation for use in animal movement studies. Isot Environ Health Stud 40:291–300CrossRefGoogle Scholar
  32. Merlivat L, Jouzel J (1979) Global climatic interpretation of the deuterium-oxygen 18 relationship for precipitation. J Geophys Res 84:5029–5033CrossRefGoogle Scholar
  33. New M, Hulme M, Jones P (1999) Representing twentieth-century space-time climate variability. Part I: development of a 1961–90 mean monthly terrestrial climatology. J Clim 12:829–856CrossRefGoogle Scholar
  34. Peixoto JP, Oort AH (1996) The climatology of relative humidity in the atmosphere. J Clim 9:3443–3463CrossRefGoogle Scholar
  35. Peng H, Mayer B, Harris S, Krouse HR (2004) A 10-year record of stable isotope ratios of hydrogen and oxygen in precipitation at Calgary, Alberta, Canada. Chem Phys Meteorol 56:147–159. doi:10.1111/j.1600-0889.2004.00094.x Google Scholar
  36. Rozanski K, Araguás-Araguás L and Gonfiantini R (1993) Isotopic patterns in modern global precipitation. In: Swart PK, Lohmann KC, McKenzie J, Savin S (eds) Climate change in continental isotopic records. Geophysical Monograph 78. American Geophysical Union, Washington, D.C., pp 1–36Google Scholar
  37. Salati E, Dall’Olio A, Matsui E, Gat JR (1979) Recycling of water in the Amazon Basin: an isotopic study. Water Resour Res 15:1250–1258CrossRefGoogle Scholar
  38. Schmidt GA, LeGrande AN, Hoffmann G (2007) Water isotope expressions of intrinsic and forced variability in a coupled ocean-atmosphere model. J Geophys Res 112:D10103. doi:10.1029/2006JD007781 CrossRefGoogle Scholar
  39. U. S. National Geophysical Data Center (1998) ETOPO-5 five minute gridded world elevation. NGDC, Boulder, Colorado, USA. http://www.ngdc.noaa.gov/mgg/global/etopo5.HTML
  40. Ufnar DF, González LA, Ludvigson GA, Brenner RL, Witzke BJ (2004) Evidence for increased latent heat transport during the Cretaceous (Albian) greenhouse warming. Geology 32:1049–1052. doi:10.1130/G20828.1 CrossRefGoogle Scholar
  41. van der Veer, G., et al. (2009), Spatial interpolation of the deuterium and oxygen-18 composition of global precipitation using temperature as ancillary variable, Journal of Geochemical Exploration, 101(2): 175–184. doi:10.1016/j.gexplo.2008.06.008.Google Scholar
  42. Welker JM (2000) Isotopic (δ18O) characteristics of weekly precipitation collected across the USA: an initial analysis with application to water source studies. Hydrol Process 14:1449–1464CrossRefGoogle Scholar
  43. Worden J, Noone D, Bowman K (2007) Importance of rain evaporation and continental convection in the tropical water cycle. Nature 445:528–532. doi:10.1038/nature05508 CrossRefGoogle Scholar
  44. Yurtsever Y and Gat JR (1981) Atmospheric waters. In: Gat JR, Gonfiantini R (eds) Stable isotope hydrology: deuterium and oxygen-18 in the water cycle. International Atomic Energy Agency, Vienna, pp 103–142Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Earth and Atmospheric SciencesPurdue Climate Change Research Center, Purdue UniversityWest LafayetteUSA

Personalised recommendations