Advertisement

Isoscapes pp 407-423 | Cite as

The Carbon Isotope Composition of Plants and Soils as Biomarkers of Pollution

  • Diane E. PatakiEmail author
  • James T. Randerson
  • Wenwen Wang
  • MaryKay Herzenach
  • Nancy E. Grulke
Chapter

Abstract

The spatial distribution of plant isotopes in urban areas provides information about pollutants and their effects on plant physiology. The radiocarbon content of plants in urban areas reflects uptake of fossil fuel derived CO2, since fossil fuels contain no radiocarbon by virtue of their age. The stable carbon isotope composition of plants reflects both pollutant uptake as well as the physiological effects of pollution on plant gas exchange. By mapping these isotopes, we can obtain information about the spatial distribution of CO2 and other pollutants in cities. While this method has not yet been widely used in urban ecology and geography, we discuss the basis for interpreting isoscapes of stable carbon and radiocarbon isotopes, and review the studies that have been conducted to date. Plant carbon isoscapes clearly have great potential for studies of pollutant distributions and greenhouse gases in cities, and may be used as integrated pollution and CO2 proxies.

Keywords

Tree Ring Accelerator Mass Spectrometry Accelerator Mass Spectrometry Pollution Gradient Stable Carbon Isotope Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by U.S. National Science Foundation grant 0620176. We thank Dachun Zhang, Greg Cane, and Xiaomei Xu for their assistance in the laboratory and Kristine Adan and Neeta Bijoor for their assistance in the field.

References

  1. Alessio M, Anselmi S, Conforto L, Improta S, Manes F, Manfra L (2002) Radiocarbon as a biomarker of urban pollution in leaves of evergreen species sampled in Rome and in rural areas (Lazio-Central Italy). Atmos Environ 36:5405–5416CrossRefGoogle Scholar
  2. Ammann M, Siegwolf R, Pichlmayer F, Suter M, Saurer M, Brunold C (1999) Estimating the uptake of traffic-derived NO2 from 15N abundance in Norway spruce needles. Oecologia 118:124–131CrossRefGoogle Scholar
  3. Andres RJ, Marland G, Boden T, Bischof S (2000) Carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1751–1991, and an estimate of their isotopic composition and latitudinal distribution. In: Wigley TML, Schimel DS (eds) The carbon cycle. Cambridge University Press, Cambridge, pp 53–62Google Scholar
  4. Arbaugh M et al (2003) Photochemical smog effects in mixed conifer forests along a natural gradient of ozone and nitrogen deposition in the San Bernardino Mountains. Environ Int 29:401–406CrossRefGoogle Scholar
  5. Boeckx P, Van Meirvenne M, Raulo F, van Cleemput O (2006) Spatial patterns of δ13C and δ15N in the urban topsoil of Gent, Belgium. Org Geochem 37:1383–1393CrossRefGoogle Scholar
  6. Conway TJ, Lang PM, Masarie KA (2007) Atmospheric carbon dioxide dry air mole fractions from the NOAA ESRL carbon cycle cooperative global air sampling network, 1968–2006, Version: 2007-09-19. In, ftp://ftp.cmdl.noaa.gov/ccg/co2/flask/event/
  7. Dongarrà G, Varrica D (2002) δ13C variations in tree rings as an indication of severe changes in the urban air quality. Atmos Environ 36:5887–5896CrossRefGoogle Scholar
  8. Evans RD (2001) Physiological mechanisms influencing plant nitrogen isotope composition. Trends Plant Sci 6:121–126CrossRefGoogle Scholar
  9. Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537CrossRefGoogle Scholar
  10. Fenn ME, Bytnerowicz A (1997) Summer throughfall and winter deposition in the San Bernardino Mountains in southern California. Atmos Environ 31:673–683CrossRefGoogle Scholar
  11. Grams TEE, Kozovits AR, Häberle K-H, Matyssek R, Dawson TE (2007) Combining δ13C and δ18O analyses to unravel competition, CO2 and O3 effects on the physiological performance of different-aged trees. Plant Cell Environ 30:1023–1034CrossRefGoogle Scholar
  12. Grimm NB, Grove JM, Pickett STA, Redman CL (2000) Integrated approaches to long-term studies of urban ecological systems. BioScience 50:571–584CrossRefGoogle Scholar
  13. Grulke NE, Balduman L (1999) Deciduous conifers: high N deposition and O3 exposure effects on growth and biomass allocation in Ponderosa pine. Water Air Soil Pollut 116:235–248CrossRefGoogle Scholar
  14. Högberg P (1997) 15N natural abundance in soil-plant systems. New Phytol 137:179–203CrossRefGoogle Scholar
  15. Hsueh DY, Krakauer N, Randerson JT, Xiaomei X, Trumbore SE, Southon JR (2007) Regional patterns of radiocarbon and fossil fuel-derived CO2 in surface air across North America. Geophys Res Lett 34. doi: 10.1029/2006GL027032
  16. Idso CD, Idso SB, Balling RC (1998) The urban CO2 dome of Phoenix, Arizona. Phys Geogr 19:95–108Google Scholar
  17. Idso CD, Idso SB, Balling RC (2001) An intensive two-week study of an urban CO2 dome in Phoenix, Arizona, USA. Atmos Environ 35:995–1000CrossRefGoogle Scholar
  18. Jędrysek MO, Krąpiec M, Skrzypek G, Kałużny A (2003) Air pollution effect and paleotemperature scale versus δ13C records in tree rings and in a peat core (southern Poland). Water Air Soil Pollut 145:359–375CrossRefGoogle Scholar
  19. Karlén I, Olsson IU, Källberg P, Kilicci S (1964) Absolute determination of the activity of two 14C dating standards. Arkiv för Geofysik 4:465–471Google Scholar
  20. Keeling CD et al. (2005) Atmospheric CO2 and 13CO2 exchange with the terrestrial biosphere and oceans from 1978 to 2000: observations and carbon cycle implications. In: Ehleringer JR, Cerling TE, Dearing MD (eds) A history of atmospheric CO2 and its implications for plants, animals, and ecosystems. Springer, New York, pp 83–113Google Scholar
  21. Kèlomé NC, Lévêque J, Andreux F, Milloux M-J, Oyédé L-M (2006) C4 plant isotopic composition (δ13C) evidence for urban CO2 pollution in the city of Cotonou, Benin (West Africa). Sci Total Environ 366:439–447CrossRefGoogle Scholar
  22. Koerner B, Klopatek J (2002) Anthropogenic and natural CO2 emission sources in an arid urban environment. Environ Pollut 116:S45–S51CrossRefGoogle Scholar
  23. Krakauer NY, Randerson JT, Primeau FW, Gruber N, Menemenlis D (2006) Carbon isotope evidence for the latitudinal distribution and wind speed dependence of the air–sea gas transfer velocity. Tellus 58B:390–417Google Scholar
  24. Lee EH, Tingey DT, Hogsett WE, Laurence JA (2003) History of tropospheric ozone for the San Bernardino Mountains of Southern California, 1963–1999. Atmos Environ 37:2705–2717CrossRefGoogle Scholar
  25. Levin I, Hesshaimer V (2000) Radiocarbon – a unique tracer of global carbon cycle dynamics. Radiocarbon 42:69–80Google Scholar
  26. Levin I, Hammer S, Kromer B, Meinhardt F (2008) Radiocarbon observations in atmospheric CO2: determining fossil fuel CO2 over Europe using Jungfraujoch observations as background. Sci Total Environ 391:211–216CrossRefGoogle Scholar
  27. Lichtfouse E, Lichtfouse M, Jaffrezic A (2003) δ13C values of grasses as a novel indicator of pollution by fossil-fuel-derived greenhouse gas CO2 in urban areas. Environ Sci Technol 37:87–89CrossRefGoogle Scholar
  28. Marino BD, McElroy MB (1991) Isotopic composition of atmospheric CO2 inferred from carbon in C4 plant cellulose. Nature 349:127–131CrossRefGoogle Scholar
  29. Norby RJ, Luo Y (2004) Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi-factor world. New Phytol 162:281–293CrossRefGoogle Scholar
  30. Norra S, Handley LL, Berner Z, Stüben D (2005) 13C and 15N natural abundances of urban soils and herbaceous vegetation in Karlsruhe, Germany. Eur J Soil Sci 56:607–620CrossRefGoogle Scholar
  31. Novak K et al (2007) Ozone air pollution effects on tree-ring growth, δ13C, visible foliar injury and leaf gas exchange in three ozone-sensitive woody plant species. Tree Physiol 27:941–949CrossRefGoogle Scholar
  32. Pataki DE, Bowling DR, Ehleringer JR (2003a) The seasonal cycle of carbon dioxide and its isotopic composition in an urban atmosphere: anthropogenic and biogenic effects. J Geophys Res 108:4735CrossRefGoogle Scholar
  33. Pataki DE et al (2003b) Tracing changes in ecosystem function under elevated carbon dioxide conditions. BioScience 53:805–818CrossRefGoogle Scholar
  34. Pataki DE, Bush SE, Ehleringer JR (2005a) Stable isotopes as a tool in urban ecology. In: Flanagan LB, Ehleringer JR, Pataki DE (eds) Stable isotopes and biosphere–atmosphere interactions: processes and biological controls. Elsevier, San Diego, CA, pp 199–216CrossRefGoogle Scholar
  35. Pataki DE, Tyler BJ, Peterson RE, Nair AP, Steenburgh WJ, Pardyjak ER (2005b) Can carbon dioxide be used as a tracer of urban atmospheric transport? Journal of Geophysical Research Atmospheres 110. doi: 10.1029/2004JD005723
  36. Pataki DE et al (2006) Urban ecosystems and the North American carbon cycle. Global Change Biol 12:1–11CrossRefGoogle Scholar
  37. Pataki DE, Xu T, Luo Y, Ehleringer JR (2007) Inferring biogenic and anthopogenic carbon dioxide sources across an urban to rural gradient. Oecologia 152:307–322CrossRefGoogle Scholar
  38. Pepin S, Körner C (2002) Web-FACE: a new canopy free-air CO2 enrichment system for tall trees in mature forests. Oecologia 133:1–9CrossRefGoogle Scholar
  39. Rakowski AZ, Nakamura T, Pazdur A (2004) Changes in radiocarbon concentration in modern wood from Nagoya, central Japan. Nucl Instrum Methods Phys Res B 223–224:507–510CrossRefGoogle Scholar
  40. Rakowski AZ, Kuc T, Nakamura T, Pazdur A (2005) Radiocarbon concentration in an urban area. Geochronometria 24:63–68Google Scholar
  41. Randerson JT, Enting IG, Schuur EAG, Caldiera K, Fung IY (2002) Seasonal and latitudinal variability of troposphere ⊗14CO2: Post bomb contributions from fossil fuels, oceans, the stratosphere, and the terrestrial biosphere. Global Biogeochem Cycles 16. doi: 10.1029/2002GB001876
  42. Riley WJ et al. (2008) Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model. Journal of Geophysical Research Biogeosciences 113. doi: 10.1029/2007JG000625
  43. Roberts ML, Southon JR (2007) A preliminary determination of the absolute 14C/12C ratio of OX-1. Radiocarbon 49:441–445Google Scholar
  44. Robinson D (2001) δ15N as an integrator of the nitrogen cycle. Trends Ecol Evol 16:153–162CrossRefGoogle Scholar
  45. Santos GM, Southon JR, Druffel-Rodriguez KC, Griffin S, Mazon M (2004) Magnesium perchlorate as an alternative water trap in AMS graphite sample preparation: a report on sample preparation at KCCAMS at the University of California, Irvine. Radiocarbon 46:165–173Google Scholar
  46. Šantru˚ˇcková H, Šantru˚ˇcek J, Šetlík J, Svoboda M, Kopáˇcek J (2007) Carbon isotopes in tree rings of Norway spruce exposed to atmospheric pollution. Environ Sci Technol 41:5778–5782CrossRefGoogle Scholar
  47. Saurer M, Maurer S, Matyssek R, Landolt W, Gundthardt-Goerg MS, Siegenthaler U (1995) The influence of ozone and nutrition on δ13C in Betula pendula. Oecologia 103:397–406CrossRefGoogle Scholar
  48. Saurer M, Cherubini P, Bonani G, Siegwolf R (2003) Tracing carbon uptake from a natural CO2 spring into tree rings: an isotope approach. Tree Physiol 23:997–1004CrossRefGoogle Scholar
  49. Saurer M, Cherubini P, Ammann M, De Cinti B, Siegwolf R (2004) First detection of nitrogen from NOx in tree rings: a 15N/14N study near a motorway. Atmos Environ 38:2779–2787CrossRefGoogle Scholar
  50. Savard MM, Begin C, Parent M (2002) Are industrial SO2 emissions reducing CO2 uptake by the boreal forest? Geology 30:403–406CrossRefGoogle Scholar
  51. Shibata S, Kawano E (1994) Effects of latitude and population density in the growing districts on 14C content of rice grains. Appl Radiat Isot 45:815–816CrossRefGoogle Scholar
  52. Shibata S, Kawano E, Nakabayashi T (2005) Atmospheric [14C]CO2 variations in Japan during 1982–1999 based on 14C measurements of rice grains. Appl Radiat Isot 63:285–290CrossRefGoogle Scholar
  53. Southon J et al (2004) The Keck Carbon Cycle AMS laboratory, University of California, Irvine: initial operation and a background surprise. Radiocarbon 46:41–49Google Scholar
  54. Stewart GR, Aidar MPM, Joly CA, Schmidt S (2002) Impact of point source pollution on nitrogen isotope signatures (δ15N). Oecologia 131:468–472CrossRefGoogle Scholar
  55. Stuiver M, Polach H (1977) Reporting of 14C data. Radiocarbon 19:355–363Google Scholar
  56. Tans PP (1981) 13C/12C of industrial CO2. In: Bolin B (ed) Carbon cycle modelling, vol 16. Wiley, Chichester, ILGoogle Scholar
  57. Trumbore SE (1996) Applications of accelerator mass spectrometry to soil science. In: Boutton TW, Yamasaki S (eds) Mass spectrometry of soils. Marcel Dekker, New York, pp 311–340Google Scholar
  58. Trumbore S (2000) Age of soil organic matter and soil respiration: radiocarbon constraints on belowground C dynamics. Ecol Appl 10:399–411CrossRefGoogle Scholar
  59. Wang W, Pataki DE (2009) The spatial distribution of radiocarbon and stable isotope biomarkers in the Los Angeles Basin. Landscape Ecol (in press), doi: 10.1007/s10980-099-9401-5Google Scholar
  60. Wang Y, Hsieh Y-P (2002) Uncertainties and novel prospects in the study of the soil carbon dynamics. Chemosphere 49:791–804CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Diane E. Pataki
    • 1
    • 2
    Email author
  • James T. Randerson
    • 1
  • Wenwen Wang
    • 2
  • MaryKay Herzenach
    • 3
  • Nancy E. Grulke
    • 4
  1. 1.Department of Earth System ScienceUniversity of CaliforniaIrvineUSA
  2. 2.Department of Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineUSA
  3. 3.Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderUSA
  4. 4.Pacific Southwest Research Station, USDA Forest ServiceRiversideUSA

Personalised recommendations