Seasonality as a Core Business of Phenology



The best characteristics of phenological observations are their description of seasons and seasonal patterns. Specific phenological phases are used to define the beginning and the end of seasons that form phenological calendars. Phenological observations more closely capture the integrated seasonal rhythm than statistically derived means or thresholds from climate elements. They only provide approximate indicators of seasonal changes and cannot replace visible or directly measurable phenomena. Including abiotic observations such as the timing of frost, thawing, icing, snow and fog even provides seasonality descriptions beyond the vegetation period. The length and position of seasons within the year is a foundation for an integrated description of seasonality presented as a phenological season diagram. Phenological observations are the indispensable basis for an integral description of a seasonal classification and seasonality. A well designed phenological diagram could offer a comprehensive picture of the rhythm and amplitude of seasons.


Biotic and abiotic phenology Environmental monitoring Mountain climate Phenological diagram Topoclimatology 



Without the year- or often decade-long observation work in past and present of numerous persons in different networks and as closet observers, phenology is unthinkable. Thanks to their nature loving engagement, masses of data are available to scientists. The invaluable assistance of Dr Reto Stöckli (Federal Office of Meteorology and Climatology MeteoSwiss, Zurich, and Department of Atmospheric Science Colorado State University, Fort Collins Colorado, USA) is gratefully acknowledged.


  1. Ahas R, Aasa A (2003) Developing comparative phenological calendars. In: Schwarz MD (ed) Phenology: an integrative environmental science. Tasks for vegetation science, vol 39. Kluwer Academic Publishers, The Netherlands, Dordrecht, pp 301–318Google Scholar
  2. Ahrends HE, Brügger R, Stöckli R et al (2008) Quantitative phenological observations of a mixed beech forest in northern Switzerland with digital photography. J Geophys Res 113: G04004, doi:10.1029/2007JG000650CrossRefGoogle Scholar
  3. Aono Y, Kazui K (2008) Phenological data series of cherry tree flowering in Kyoto, Japan, and its application to reconstruction of springtime temperatures since the 9th century. Int J Climatol 28: 905–914CrossRefGoogle Scholar
  4. Brügger R, Vassella A (2003) Pflanzen im Wandel der Jahreszeiten. Geographica Bernensia, Bern, SwitzerlandGoogle Scholar
  5. Bruns E, van Vliet AJH (2003) Standardisation and observation methodologies of phenological networks in Europe. Wageningen University, German Weather Service, Wageningen, OffenbachGoogle Scholar
  6. Bucher F, Jeanneret F (1994) Phenology as a tool in Topclimatology. A cross-section through the Swiss Jura Mountains. In: Beniston M (ed) Mountain environments in changing climates. Routledge, London, New YorkGoogle Scholar
  7. Defila C (1992) Pflanzenphänologische Kalender ausgewählter Stationen in der Schweiz. Calendriers phytophénologiques d’un choix de stations en Suisse. Beiheft zu den Annalen der Schweizerischen Meteorologischen Anstalt Zürich, Jahrgang 1989Google Scholar
  8. Defila C, Jeanneret F (2007) Phänologie – ein Biomonitoring und seine Anwendungen. Schweiz. Z Forstwesen 158: 98–104CrossRefGoogle Scholar
  9. Gams H (1961) Die Pflanzenwelt. Landes- und Volkskunde Vorarlberg I. Innsbruck: 135–172Google Scholar
  10. Henniges Y, Danzeisen H, Zimmermann R-D (2005) Regionale Klimatrends mit Hilfe der phänologischen Uhr, dargestellt am Beispiel Rheinland-Pfalz. Z Umweltchemie Ökotox 17: 28–34CrossRefGoogle Scholar
  11. Jeanneret F (1972) Methods and problems of mesoclimatic surveys in a mountainous country. A research programme in the Canton of Berne, Switzerland. In Stokes E (ed) Proceedings 7th geography conference, New Zealand Geographical Society, Hamilton, New ZealandGoogle Scholar
  12. Jeanneret F (1997) From spatial sensing to environmental monitoring: a topoclimatic and phenological survey through Switzerland. In: Hočevar A, Črepinšek Z, Bogataj-Kajfez L (eds) Biometeorology: proceedings of the 14th International congress on biometeorology, Ljubljana, September, 1996Google Scholar
  13. Jeanneret F (2005) The rhythm of seasonality – A phenological season diagram. Analele Universiăţii de Vest din Timişoara, Seria Geograpfie: 5–16Google Scholar
  14. Jeanneret F, Brügger R (2005) Plant phenology, fog and snow cover duration – A topoclimatic survey of seasonality. Ann Meteor 41: 528–531Google Scholar
  15. Lauer W, Rafiqpoor MD (2003) Die Klimate der Erde. Eine Klassifikation auf der Grundlage der ökophysiologischen Merkmale der realen Vegetation. Erdwissenschaftliche Forschung Bd. XL. Steiner, StuttgartGoogle Scholar
  16. Lavoie C, Lachance D (2006) A new herbarium-based method for reconstructing the phenology of plant species across large area. American J Bot 93: 512–516CrossRefGoogle Scholar
  17. Lieth H (1971) The phenological viewpoint in productivity studies. In: Duvigneaud P (ed) Productivity of forest ecosystems. Proceedings of the Brussels Symposium by UNESCOGoogle Scholar
  18. Lieth H (1974) Phenology and Seasonality Modeling. Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  19. Lieth H, Berlekamp J, Fuest J et al (1999) Climate diagram World Atlas on CD (unpaginated electronic publication), Backhuys Publishers, Leiden, NetherlandsGoogle Scholar
  20. Messerli B, Volz R, Wanner H et al (1978) Beiträge zum Klima des Kantons Bern. Jahrbuch der geographischen Gesellschaft von Bern, Bd. 52/1975–76Google Scholar
  21. Miller-Rushing A, Primack RB, Primack D et al (2006) Photographs and herbarium specimens as tools to document phenological changes in response to global warming. American J Bot 93:1667–1674CrossRefGoogle Scholar
  22. Nekovář J (ed.) (2008) COST Action 725: The history and current status of plant phenology in Europe: Finnish Forest Research Institute Muhos Research Unit and COST Office, Vammalan Kirjapaino Oy, FinlandGoogle Scholar
  23. Primack D, Imbres C, Primack RB et al (2004) Herbarium specimens demonstrate earlier flowering times in response to warming in Boston. American J Bot 91: 1260–1264CrossRefGoogle Scholar
  24. Rutishauser T (2007) Historical phenology: plant phenological reconstructions and climate sensitivity in Northern Switzerland. Dissertation, University of BernGoogle Scholar
  25. Sanchez-Azofeifa A, Kalacska ME, Quesada M et al (2003) Tropical dry climates. In: Schwartz MD (ed) Phenology. An integrative environmental science. Tasks for vegetation science, vol. 39. Kluwer Academic Publishers, Dordrecht, pp 121–137Google Scholar
  26. Schnelle F (1955) Pflanzenphänologie. Probleme der Bioklimatologie, vol 3. LeipzigGoogle Scholar
  27. Sparks TH (2007) Lateral thinking on data to identify climate impacts. Trends Ecol Evol 22: 169–171CrossRefPubMedGoogle Scholar
  28. Sparks TH, Carey PD (1995) The responses of species to climate over two centuries: an analysis of the Marshan Phenological Record 1736–1947. J Ecol 82: 321–329Google Scholar
  29. van Vliet AJH, De Groot RS (2003) “Challenging times” in the context of the European phenology network. In: van Vliet AJH, de Groot RS (eds) Challenging times: towards an operational system for monitoring, modeling, and forecasting of phenological changes and their socio-economic impacts Wageningen University, The NetherlandsGoogle Scholar
  30. van Vliet AJH, Braun P, Brügger R et al (2003) The European phenology network; Nature’s calendar on the move. Wageningen University, WageningenGoogle Scholar
  31. Walter H, Lieth H (1960–1967) Klimadiagramm-Weltatlas. Fischer, JenaGoogle Scholar
  32. Wielgolaski FE, Inouye DW (2003) High latitude climates. In: Schwartz MD (ed) Phenology. An integrative environmental science. Tasks for vegetation science, vol. 39. Kluwer, Dordrecht, pp 175–194Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Institute of GeographyUniversity of Bern, Research Group PHENOTOPBernSwitzerland

Personalised recommendations