Advertisement

Global Framework for Data Collection – Data Bases, Data Availability, Future Networks, Online Databases

  • Elisabeth KochEmail author
Chapter

Abstract

Since the 1990s, phenology has regained scientific interest as a biological indicator for climate change (Schwartz 2003). Menzel and Fabian (1999) and Chmielewski and Rötzer (2001) were able to demonstrate with the observation series of the International Phenological Gardens’ network that spring has advanced in Europe and autumn has come later. The autumn signal is not as significant as the earlier onset of spring, however, which results in a longer vegetation period in the middle and higher northern latitudes. The growing interest in, and importance of, phenology is also visible in the report of Working Group II, Assessment of observed changes and responses in natural and managed systems (Rosenzweig et al. 2007) of the 4th assessment report of the Intergovernmental Panel on Climate Change.

Keywords

Phenological Data Phenological Observation Implementation Team Observation Program Phenological Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ahas R (1999) Long-term phyto-, ornitho- and ichthyophenological time-series analysis in Estonia. Int J Biometeorol 42:19–123CrossRefGoogle Scholar
  2. Alencar JDC (1994) Fenologia de cinco espécies arbóreas tropicais de Sapotaceae correlacionada a variáveis climáticas na Reserva Ducke. Acta Amaz 24:161–182Google Scholar
  3. Alencar JDC, Almeida RA, Fernandes NP (1979) Fenologia de espécies arbóreas em floresta tropical úmida de terra-firme na Amazônia Central. Acta Amaz 9:163–198Google Scholar
  4. American Institute of Biological Sciences (2004) Ecological Impacts of climate change: report from a NEON Science Workshop, Washington, D.C., AIBS. http://ibrcs.aibs.org/reports/pdf/neon-climate-report.pdf
  5. Aono Y, Kazui K (2008) Phenological data series of cherry tree flowering in Kyoto, Japan, and its application to reconstruction of springtime temperatures since the 9th century. Int J Climate 28:905–914CrossRefGoogle Scholar
  6. Araújo VDC (1970) Fenologia de essências florestais amazônicas I. Bol INPA – Pesqui florest 17:1–25Google Scholar
  7. Atkinson MD (2002) Phenological studies of Sambucus nigra. Arbor Phaenol 45:20–25Google Scholar
  8. Atkinson R, Sawmy M (2003) Research and management suggestions for constructing self-sustainable and healthy Pink Pigeon populations. Unpublished report to the Mauritian Wildlife Foundation, Vacoas, MauritiusGoogle Scholar
  9. Beaubien EG, Johnson DL (1994) Flowering plant phenology and weather in Alberta, Canada. Int J Biometeorol 38:23–27CrossRefGoogle Scholar
  10. Betancourt JL, Schwartz MD, Breshears DD et al. (2005) Implementing a U.S. national phenology network. EOS 86:539–541CrossRefGoogle Scholar
  11. Betancourt JL, Schwartz MD, Breshears DD et al. (2007) Evolving plans for a USA national phenology network. EOS 88:211CrossRefGoogle Scholar
  12. Bissolli P, Müller-Westermeier G, Dittmann E et al. (2005) 50-year time series of phenological phases in Germany and Slovakia: a statistical comparison. Meteorol Z 14:173–182CrossRefGoogle Scholar
  13. Bruns E, Chmielewski F-M, van Vliet AJH (2003) The global phenological monitoring concept. In: Schwartz MD (ed) Phenology: an integrative environmental science. Tasks for vegetation science, vol 39. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 93–104Google Scholar
  14. Caprio JM (1957) Phenology of lilac bloom in Montana. Science 126:1344–1345CrossRefPubMedGoogle Scholar
  15. Caprio JM (1966) Patterns of plant development in the Western United States. Montana Agricultural Experiment Station Bulletin 607. Montana State University, BozemanGoogle Scholar
  16. Carnaby IC (1954) Nesting seasons of Western Australian birds. West Aust Nat 4:149–156Google Scholar
  17. Cayan DR, Kammerdiener S, Dettinger MD et al. (2001) Changes in the onset of spring in the western United States. B Am Meteorol Soc 82:399–415CrossRefGoogle Scholar
  18. Chambers LE (2006) Associations between climate change and natural systems in Australia. B Am Meteorol Soc 87:201–206CrossRefGoogle Scholar
  19. Cheke AS (1987) The ecology of larger birds of Mauritius. In Diamond AW (ed) Studies of Mascarene Island birds, Cambridge University Press, Cambridge, pp 245–300Google Scholar
  20. Chen HX, Chen B, Hu YuR (2005) Spatial and temporal variation of phenological growing season and climate change impacts in temperate Eastern China. Global Change Biol 11:1118–1130CrossRefGoogle Scholar
  21. Cheng C, Feng X, Gao L et al. (eds) (1993) Climate and agriculture in China. China Meteorological Press, BeijingGoogle Scholar
  22. Chmielewski F-M, Rötzer T (2001) Response of tree phenology to climate change across Europe. Agr Forest Meteorol 108:101–112CrossRefGoogle Scholar
  23. Chmielewski F-M, Rötzer T (2002) Annual and spatial variability of the beginning of growing season in Europe in relation to air temperature changes. Clim Res 19:257–264CrossRefGoogle Scholar
  24. Chu C (1931) New monthly calendar (in Chinese). B Chin Meteorol Soc 6:1–14Google Scholar
  25. Chuine I (2001) Using the IPG observations to test for model estimates stability across environments. Arbor Phaenol 44:6–8Google Scholar
  26. COST (2007) COST European cooperation in the field of scientific and technical research. http://www.cost.esf.org/ Cited 27 Oct 2007
  27. Demarée G, Chuine I (2006) A concise history of the phenological observations at the Royal Meteorological Institute of Belgium. In: Dalezios H, Tzortzios S (eds) Proceedings vol III Phenology – Agroclimatology HAICTA 20–23 September 2006, VolosGoogle Scholar
  28. Donelly A (2002) Trees as climate change indicators for Ireland. Arbor Phaenol 45:7–19Google Scholar
  29. Fritsch C, Löw F (1859) Phänologische Übersichten von Österreich, August 1857, in A.U. Burkhardt: Übersichten der Witterung in Österreich und einigen auswärtigen Stationen im Jahre 1857, Wien aus der Kaiserlich – Königlichen Hof- und StaatsdruckereiGoogle Scholar
  30. Fritsch K (1858) Instruction für phänologische Beobachtungen. Jahrbücher der k.k. Centralanstalt für Meteorologie und Erdmagnetismus, V. Band, Jg 1853, Kaiserlich Königliche Hof- und Staatsdruckerei Wien, pp 51–62Google Scholar
  31. GCOS – 107 /WMO/TD No.1338 (2006) Systematic observation requirements for satellite based products for climate. Supplemental details to the satellite-based component of the “Implementation Plan for the Global Observing System for Climate in support of the UNFCCC”. http://www.wmo.int/pages/prog/gcos/publication.gcos-107.pdf. Cited 15 October 2009
  32. Hopp RJ (1974) Plant phenology observation networks. In: Lieth H (ed) Phenology and seasonality modeling. Ecological Studies 8, Springer-Verlag, Berlin/Heidelberg/New York, pp 25–43Google Scholar
  33. Horakova P (ed) (2000) New contributions to phenology, Proceedings of the IV. Workshop on phenology, Duksany Czeck Republic, October 12–13, 1999, Czech Hydrometeorological Institute, PragueGoogle Scholar
  34. Ihne E (1883–1941) Phänologische Mitteilungen. Arbeiten der Landwirtschaftskammer Hessen und Selbstverlag. 1–59. DarmstadtGoogle Scholar
  35. Ihne E (1884) Geschichte der pflanzenphänologischen Beobachtungen in Europa nebst Verzeichniss der Schriften, in welchen dieselben niedergelegt sind. Beiträge zur Phänologie, I.J. Ricker’sche Buchhandlung, GiessenGoogle Scholar
  36. Institute of Geography at Chinese Academy of Sciences (ed) (1965) Yearbook of Chinese animal and plant phenological observation No. 1. Science Press, Beijing (in Chinese)Google Scholar
  37. IPCC (2001) Summary for policymakers. Climate change 2001: impacts, adaptation, and vulnerability. A report of Working Group II of the Intergovernmental Panel on Climate Change. IPCC, GenevaGoogle Scholar
  38. IPCC (2007) Summary for policy makers. Climate change 2007: impacts, adaptation and vulnerability Working Group II contribution to the Intergovernmental Panel on Climate Change fourth assessment report. GenevaGoogle Scholar
  39. Jones CG (1995) Studies on the biology of the Pink Pigeon Columba mayeri. Ph.D. Thesis, University College of Swansea, University of Wales, Swansea, UKGoogle Scholar
  40. Jones CG (2004) Conservation management of endangered birds. In Sutherland WJ et al. (eds) Bird ecology and conservation, Oxford University Press, Oxford, pp 269–301CrossRefGoogle Scholar
  41. Keatley MR, Fletcher TD (2003) Phenological data, networks, and research: Australia. In: Schwartz MD (ed) Phenology: an integrative environmental science. Tasks for vegetation science, vol 39, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 27–44Google Scholar
  42. Keatley MR, Fletcher TD, Hudson IL et al. (2002) Phenological studies in Australia: potential application in historical and future climate analysis. Int J Climate 22:1769–1780CrossRefGoogle Scholar
  43. Keatley MR, Chambers LE, Martin RAU (2008) PhenoARC: extending Australia’s phenological record. In: Harmony within nature. The 18th International Congress of Biometeorology Tokyo, JapanGoogle Scholar
  44. Koch E, Dittmann E, Lipa W et al. (2005) COST Action 725 establishing a European phenological data platform for climatological applications, Annalen der Meteorologie 41, Vol 2, DWD, Offenbach am MainGoogle Scholar
  45. Kokorin AO, Minin AA, Shepeleva AA (eds) (2002) Ecoregional climate change and biodiversity decline, Issue 2, Chukotka Ecoregion. World Wildlife Fund- Russia, Moscow, Russia, 24 pp. http://www.wwf.ru/data/publ/passport/chukotka_eng.pdf
  46. Köstner B, Niemand C, Prasse H (2005) A 40-Year study period of tree phenology at Tharandt international phenological garden. Arbor Phaenol 48:19–23Google Scholar
  47. Kramer K (1996) Phenology and growth of Europeans trees in relation to climate change. Thesis Landbouw Univ. Wageningen 210 SGoogle Scholar
  48. Lingelbach E (1980) Vom Messnetz der Societas Meteorologica Palatina zu den weltweiten Messnetzen heute. Ann Meteorol (Neue Folge) No 16. Symposium anläßlich der 200. Wiederkehr des Gründungsjahres der Societas Meteorologica Palatina, Mannheim 13. – 15./10.1980, DWD Offenbach am MainGoogle Scholar
  49. Malham J, Jones C, Tatayah V (2007) Echo Parakeet management report 2007. Unpublished report to the Mauritian Wildlife Foundation; National Parks and Conservation Services of Mauritius; Durrell Wildlife Conservation Trust; International Veterinary Group; IBL Aviation, Shipping and other Services; Chester Zoo; and the World Parrot TrustGoogle Scholar
  50. Meier U (ed) (1997) Growth stages of mono- and dicotyledonous plants. BBCH Monograph. Blackwell Wissenschafts-Verlag, Berlin, WienGoogle Scholar
  51. Menzel A (1998) Ergebnisse der Internationalen Phänologischen Gärten 1959–1993. Arbor Phaenol 41:3–9Google Scholar
  52. Menzel A (2003) Phenological data networks and research: Europe. In: Schwartz MD (ed) Phenology: an integrative environmental science. Tasks for vegetation science, vol 39, Kluwer Academic Publishers, The Netherlands, Dordrecht, pp 45–56Google Scholar
  53. Menzel A, Estrella N, Fabian P (2001) Spatial and temporal variability of the phenological seasons in Germany from 1951 to 1996. Global Change Biol 7:657–666CrossRefGoogle Scholar
  54. Menzel A, Fabian P (1999) Growing season extended in Europe. Nature 397:659CrossRefGoogle Scholar
  55. Menzel A, Sparks TH, Estrella N, Eckhardt S (2005) ‘SSW to NNE’ – NAO effects the progress of seasons across Europe. Global Change Biol 11:909–918CrossRefGoogle Scholar
  56. Menzel A, Sparks TH, Estrella N et al. (2006) European phenological response to climate change matches the warming pattern. Global Change Biol 12:1969–1976CrossRefGoogle Scholar
  57. Menzel A (1997) Phänologie von Waldbäumen unter sich ändernden Klimabedingungen – Auswertung der Beobachtungen in den Internationalen Phänologischen Gärten und Möglichkeiten der Modellierung von Phänodaten. Forstliche Forschungsberichte 164, MünchenGoogle Scholar
  58. Minin AA (1991) Klimat i ekosistemy sushi: vzaimosvyazi i prostranstvenno-vremennaya izmenchivost’ sostoyanii // Itogi nauki i tekhniki: meteorologiya i klimatologiya. M.: VINITI, MoscowGoogle Scholar
  59. Minin AA (2000) Phenology of the Russian plain: data and generalization. ABF Publ. House, Moscow (in Russian)Google Scholar
  60. Morellato LPC (2003) Phenological data, networks, and research: South America. In: Schwartz MD (ed) Phenology: an Integrative Environmental Science. Tasks for vegetation science, vol 39, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 75–92Google Scholar
  61. Morren C (1853) Souvenirs phénologiques de l’hiver 1852–1853. Bulletin de l‘Académie Royale de Sciences, des Lettres et des Beaux-Arts de Belgique 20:160–186Google Scholar
  62. National Meteorological Administration (ed) (1993) Agrometeorological observation criterion Vol. 1 and 2. China Meteorological Press, Beijing (in Chinese)Google Scholar
  63. Nekovář J, Koch E, Kubin E et al. (eds) (2008) COST Action 725: The history and current status of plant phenology in Europe: Finnish Forest Research Institute Muhos Research Unit and COST Office, Vammalan Kirjapaino Oy, FinlandGoogle Scholar
  64. Ostergren D, Hollenhorst S (2000) The Russian chronicles of nature (Letopis prirody): Is this a model for a chronicle of wilderness? Int J Wild 6:28–34Google Scholar
  65. Prince JE (1891) Phenology and rural biology. Victorian Nat 8:119–127Google Scholar
  66. Robinson AH (1954) Nesting seasons of Western Australian birds – a further contribution. West Aust Nat 4:187–192Google Scholar
  67. Rosenzweig C, Casassa DJ, Karoly DJ et al. (2007) Assessment of observed changes and responses in natural and managed systems. Climate Change 2007: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ML Parry, OF Canziani, Palutikof JP et al. Cambridge University Press, Cambridge UK: 79–131Google Scholar
  68. Safford RJ (1997) A survey of the occurrence of native vegetation remnants on Mauritius in 1993. Biol Conser 80:181–188CrossRefGoogle Scholar
  69. Schnelle F (1955) Pflanzenphänologie. Akademische Verlagsgesellschaft Geest & Portig K.-G., LeipzigGoogle Scholar
  70. Schnelle F, Volkert F (1957) Vorschläge zur Errichtung, Internationaler Phänologischer Gärten als stationen eines Grundnetzes für internationale phänologische Beobachtungen. Meteorol Rundsch 10:130–133Google Scholar
  71. Schwartz MD (1994) Monitoring global change with phenology: the case of the spring green wave. Int J Biometeorol 38:18–22CrossRefGoogle Scholar
  72. Schwartz MD (1998) Green-wave Phenology. Nature 394:839–840CrossRefGoogle Scholar
  73. Schwartz MD (ed) (2003) Phenology: an integrative environmental science. Tasks for vegetation science, vol 39. Kluwer Academic Publishers, The Netherlands, DordrechtGoogle Scholar
  74. Schwartz MD, Beaubien EG (2003) Phenological data, networks and research: North America. In: Schwartz MD (ed) Phenology: an integrative environmental science. Tasks for vegetation science, vol 39, Kluwer Academic Publishers, The Netherlands, Dordrecht, pp 57–73Google Scholar
  75. Schwartz MD, Ahas R, Aasa A (2006) Onset of spring starting earlier across the Northern hemisphere. Global Change Biol 12:343–351CrossRefGoogle Scholar
  76. Societas Meteorologica Palatina (1781–1794) Ephermerides societatis meteorologicae palatinae. Manheimii, GermanyGoogle Scholar
  77. Sparks TH, Carey PD (1995) The responses of species to climate over two centuries: an analysis of the Marshman phenological record, 1736–1947. J Ecol 83:321–329CrossRefGoogle Scholar
  78. Sparks TH, Croxton PJ, Collinson N et al. (2005) Examples of phenological change, past and present, in UK farming. Ann Appl Biol 146:531–537CrossRefGoogle Scholar
  79. Strahm WA (1993) The conservation and restoration of the flora of Mauritius and Rodrigues. Dissertation, University of ReadingGoogle Scholar
  80. Swinnerton KJ (2001) Conservation and ecology of the Pink Pigeon Columba mayeri in Mauritius. Dissertation, University of KentGoogle Scholar
  81. van Vliet AJH, Braun P, Brügger R et al. (2003) European phenology network Nature’s calendar on the move. Department of Environmental Sciences, Wageningen UniversityGoogle Scholar
  82. Vidyakina SV (2004) Changes of climate in the European North. Arkhangelsk. Arkhangelsk State Technological University SOLTI. (in Russian)Google Scholar
  83. Wan M, Liu X (1979) Method of Chinese phenological observation. Science Press, Beijing (in Chinese)Google Scholar
  84. Wang JY (1967) Agricultural meteorology. Agriculture Weather Information Service, San Jose, CaliforniaGoogle Scholar
  85. Westoby M (1991) On long-term ecological research in Australia. In: Risser P (ed) Long-term ecological research, John Wiley and Sons, Chichester, pp 191–209Google Scholar
  86. WMO (World Meteorological Organisation) Commission for Climatology (2007) Expert team on climate monitoring. http://www.omm.urv.cat/media/documents/WMO.pdf. Cited 15 August 2007
  87. WMO (World Meteorological Organization) (1986) The AGRHYMET Programme. Environmentalist 6:141–142CrossRefGoogle Scholar
  88. World Wildlife Fund Russia (2003) Ecoregional climate change and biodiversity decline: Issue 3, Kola Ecoregion. http://www.wwf.ru/resources/publ/book/eng/54/ Cited 15 October 2009
  89. Yang G, Chen X (1995) Phenological calendars and their applications in the Beijing area. Capital Normal University Press, Beijing (in Chinese)Google Scholar
  90. Zhou L, Tucker CJ, Kaufmann RK, Slayback D, Shabanov NV, Myneni RB (2001) Variations in northern vegetation activity interfered from satellite data of vegetation index during 1981 to 1999. J Geophys Res Atmos 106:20069–20083CrossRefGoogle Scholar
  91. Žust A, Sušnik A, Habič B (2006) Data quality control procedures within the common european phenological data platform COST725. Proceedings of the EMS/Sixth European Conference on Applied Climatology ECAC 2006, Ljubljana, Slovenia, September 4–8, 2006Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Zentralanstalt für Meteorologie und GeodynamikWienAustria

Personalised recommendations