Quantum Confinement in Nanometric Structures

  • Magdalena L. CiureaEmail author
  • Vladimir Iancu


This paper discusses the quantum confinement effects in nanometric structures that form low dimensional systems. In such systems, each surface/ interface acts like a potential barrier, i.e. the wall of a quantum well, generating new energy levels. These levels are computed in a model that uses the approximation of the infinite rectangular quantum wells. The model is adapted for 2D, 1D and 0D systems, respectively. Different applications are discussed. The differences between the model results and the experimental data are proved to be of the same order of magnitude as the differences between the levels computed within the frame of infinite and finite quantum well approximations.


High Resolution Transmission Electron Microscopy High Resolution Transmission Electron Microscopy Quantum Confinement Internal Quantum Efficiency Spherical Bessel Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Brewer M, Utzinger U, Li Y, Atkinson EN, Satterfield W, Auersperg N, Follen M, Bast R (2002) Fluorescence spectroscopy as a biomarker in a cell culture and in a nonhuman primate model for ovarian cancer chemopreventive agents. J Biomed Optics 7:20–26CrossRefGoogle Scholar
  2. 2.
    LaVan DA, McGuire T, Langer R (2003) Small-scale systems for in vivo drug delivery. Nat Biotechnol 21:1184–1191CrossRefGoogle Scholar
  3. 3.
    Gaburro Z, Oton CJ, Pavesi L (2004) Opposite effects of NO2 on electrical injection in porous silicon gas sensors. Appl Phys Lett 84:4388–4390CrossRefGoogle Scholar
  4. 4.
    Li XJ, Zhang YH (2000) Quantum confinement in porous silicon. Phys Rev B 61:12605–12607CrossRefGoogle Scholar
  5. 5.
    McDonald SA, Cyr PW, Levina L, Sargent EH (2004) Photoconductivity from PbS-nanocrystal/semiconducting polymer composites for solution-processible, quantum-size tunable infrared photodetectors. Appl Phys Lett 85:2089–2091CrossRefGoogle Scholar
  6. 6.
    Arango AC (2005) A quantum dot heterojunction photodetector. M.Sc. thesis. MIT, Cambridge, MA, USAGoogle Scholar
  7. 7.
    Walters RJ, Bourianoff GI, Atwater HA (2005) Field-effect electroluminescence in silicon nanocrystals. Nat Mater 4:143–146CrossRefGoogle Scholar
  8. 8.
    Fert A (2008) Spintronics: fundamentals and recent developments. 22nd General Conference Cond. Matter Division Eur. Phys Soc, Rome, 25–29 August 2008Google Scholar
  9. 9.
    Ihn T, Gustavsson S, Müller T, Schnez S, Güttinger J, Molitor F, Stampfer C, Ensslin K (2008) Electronic transport in quantum dots: from GaAs to grapheme. 22nd Gen. Conf. Cond. Matter Division Eur. Phys. Soc., Rome, 25–29 August 2008Google Scholar
  10. 10.
    Shields, A.: Nano-photonic devices for quantum information technology. 22nd Gen. Conf. Cond. Matter Division Eur. Phys. Soc., Rome, August 25–29 2008Google Scholar
  11. 11.
    Iancu V, Ciurea ML (1998) Quantum confinement model for electrical transport phenomena in fresh and stored photoluminescent porous silicon films. Solid-State Electron 42:1893–1896CrossRefGoogle Scholar
  12. 12.
    Ciurea ML, Teodorescu VS, Iancu V, Balberg I (2006) Electrical transport in Si–SiO2 nanocomposite films. Chem Phys Lett 423:225–228CrossRefGoogle Scholar
  13. 13.
    Harrison P (2005) Quantum wells, wires and dots. Wiley, ChichesterCrossRefGoogle Scholar
  14. 14.
    Iancu V, Fara L (2007) Modelling of multi-layered quantum well photovoltaic cells. The 17th International Photovoltaic Science and Engineering Conference PVSEC 17. Fukuoka, 3–7 December 2007Google Scholar
  15. 15.
    Ciurea ML, Iancu V, Teodorescu VS, Nistor LC, Blanchin M-G (1999) Microstructural aspects related to carriers transport properties of nanocrystalline porous silicon films. J Electrochem Soc 146:2517–2521CrossRefGoogle Scholar
  16. 16.
    Ciurea ML, Baltog I, Lazar M, Iancu V, Lazanu S, Pentia E (1998) Electrical behaviour of fresh and stored porous silicon films. Thin Solid Films 325:271–277CrossRefGoogle Scholar
  17. 17.
    Delerue C, Allan G, Lannoo M (1993) Theoretical aspects of the luminescence of porous silicon. Phys Rev B 48:11024–11036CrossRefGoogle Scholar
  18. 18.
    Iancu V, Ciurea ML, Stavarache I, Teodorescu VS (2007) Phototransport and photoluminescence in nanocrystalline porous silicon. J Optoelectron Adv Mater 9:2638–2643Google Scholar
  19. 19.
    Heitmann J, Müller F, Yi LX, Zacharias M, Kovalev D, Eichhorn F (2004) Excitons in Si nanocrystals: confinement and migration effects. Phys Rev B 69:195309–1–7Google Scholar
  20. 20.
    Teodorescu VS, Ciurea ML, Iancu V, Blanchin M-G (2008) Morphology of Si nanocrystallites embedded in SiO2 matrix. J Mater Res 23:2990–2995CrossRefGoogle Scholar
  21. 21.
    Iancu V, Mitroi MR, Lepadatu A-M, Ciurea ML Evaluation of the internal quantum efficiency for quantum dot photovoltaic cells. Nanotechnol. (submitted, December 2008)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.National Institute of Materials PhysicsBucharest-MagureleRomania
  2. 2.University “Politehnica” of BucharestBucharestRomania

Personalised recommendations