Comparing Numerical Methods for Solving Nonlinear Fractional Order Differential Equations

  • Farhad Farokhi
  • Mohammad HaeriEmail author
  • Mohammad Saleh Tavazoei


This paper is a result of comparison of some available numerical methods for solving nonlinear fractional order ordinary differential equations. These methods are compared according to their computational complexity, convergence rate, and approximation error. The present study shows that when these methods are applied to nonlinear differential equations of fractional order, they have different convergence rate and approximation error.


  1. 1.
    Adomian G (1988) A review of the decomposition method in applied mathematics. J Math Anal Appl 135:501–544zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bagley RL, Calico RA (1999) Fractional order state equations for the control of viscoe-lastic structures. J Guid Control Dyn 14(2):304–311CrossRefGoogle Scholar
  3. 3.
    Benson DA, Wheatcraft SW, Meerschaert MM (2000) Application of a fractional ad-vection-dispersion equation. Water Resour Res 36(6):1403–1412CrossRefGoogle Scholar
  4. 4.
    Caputo M (1967) Linear models of dissipation whose Q is almost frequency independent. Geophys J Roy Astr Soc 13:529–539Google Scholar
  5. 5.
    Chen L, Zhao D (2005) Optical image encryption based on fractional wavelet transform. Opt Commun 254:361–367CrossRefGoogle Scholar
  6. 6.
    Daftardar-Gejji V, Jafari H (2007) Analysis of a system of non-autonomous fractional differential equations involving Caputo derivatives. J Math Anal Appl 328:1026–1033zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Deng W (2007) Short memory principle and a predictor-corrector approach for fractional differential equations. J Comput Appl Math 206:174–188zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Diethelm K, Ford NJ, Freed (2002) A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dynam 29:3–22Google Scholar
  9. 9.
    Diethelm D, Ford NJ (2002) Analysis of fractional differential equations. J Math Anal Appl 265:229–248zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Ford NJ, Simpson (2001) The numerical solution of fractional differential equations: speed versus accuracy. Numer Algorithms 26:336–346Google Scholar
  11. 11.
    Ford NJ, Connolly JA (2008) Systems-based decomposition schemes for the approximate solution of multi-term fractional differential equations. J Comput Appl Math. doi:10.1016/ Scholar
  12. 12.
    Hartley TT, Lorenzo CF, Qammer HK (1995) Chaos in a fractional order Chua’s sys-tem. IEEE Trans CAS-I 42:485–490CrossRefGoogle Scholar
  13. 13.
    Ichise M, Nagayanagi Y, Kojima T (1971) An analog simulation of non-integer order transfer functions for analysis of electrode process. J. Electroanal Chem 33:253–265Google Scholar
  14. 14.
    Koeller RC (1984) Application of fractional calculus to the theory of viscoelasticity. J Appl Mech 51:299–307CrossRefMathSciNetGoogle Scholar
  15. 15.
    Kumar P, Agrawal OM (2006) An approximate method for numerical solution of fractional differential equations. Signal Process 86:2602–2610zbMATHCrossRefGoogle Scholar
  16. 16.
    Lin R, Liu F (2007) Fractional high order methods for the nonlinear fractional ordinary differential equation. Nonlinear Anal 66(4):856–869zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Lubich Ch (1986) Discretized fractional calculus. SIAM J Math Anal 17(3):704–719zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Momani S, Odibat Z (2007) Numerical comparison of methods for solving linear differential equations of fractional order. Chaos Soliton Fract 31:1248–1255zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Momani S, Odibat Z (2007) Numerical approach to differential equations of fractional order. J Comp Appl Math 207(1):96–110zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Oustaloup A, Sabatier J, Lanusse P (1999) From fractal robustness to CRONE control. Fract Calculus Appl Anal 2:1–30zbMATHMathSciNetGoogle Scholar
  21. 21.
    Shawagfeh N, Kaya D (2004) Comparing numerical methods for the solutions of systems of ordinary differential equations. Appl Math Lett 17:323–318zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Vanloan CF (2000) Introduction to scientific computing: a Matrix-Vector Approach using MATLAB. Prentice-Hall, New JerseyGoogle Scholar
  23. 23.
    Wazwaz AM (2007) A comparison between the variational iteration method and Adomian decomposition method. J Comput Appl Math 207(1):129–136zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Farhad Farokhi
    • 1
  • Mohammad Haeri
    • 1
    Email author
  • Mohammad Saleh Tavazoei
    • 1
  1. 1.Advanced Control System Lab., Electrical Engineering DepartmentSharif University of TechnologyTehranIran

Personalised recommendations