Modulation of Early Inflammatory Reactions to Promote Engraftment and Function of Transplanted Pancreatic Islets in Autoimmune Diabetes

  • Lorenzo Piemonti
  • Luca G. Guidotti
  • Manuela Battaglia
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 654)

Abstract

We acknowledge that successful long-term islet survival in the liver and immune tolerance to intrahepatic islet antigens are highly dependent upon the initial inflammatory and priming events that occur at this site. Thromboembolic and necroinflammatory events occurring in the liver early after portal vein islet transplantation are thought to reduce the total islet mass by up to 75%. The magnitude of such loss represents a major factor necessitating the extremely large number of islets needed to achieve normoglycemia. A better understanding and control of these events – including their likely support to effector immune responses – are required if we are to develop ways to prevent them, improve intrahepatic islet engraftment, and achieve long-term tolerance.

Keywords

Type 1 diabetes Pancreatic islet transplantation Instant blood-mediated inflammatory reaction 

References

  1. 1.
    Franco OH, Steyerberg EW, Hu, FB, Mackenbach J, Nusselder W. Associations of diabetes mellitus with total life expectancy and life expectancy with and without cardiovascular disease. Arch Intern Med 2007:167:1145–51.PubMedCrossRefGoogle Scholar
  2. 2.
    Hu FB, Stampfer MJ, Solomon CG, Liu S, Willett WC, Speizer FE, Nathan DM, Manson JE. The impact of diabetes mellitus on mortality from all causes and coronary heart disease in women: 20 years of follow-up. Arch Intern Med 2001;161:1717–23.PubMedCrossRefGoogle Scholar
  3. 3.
    Robertson RP, Davis C, Larsen J, Stratta R, Sutherland DE. Pancreas and islet transplantation for patients with diabetes. Diabetes care 2000;23:112–6.PubMedCrossRefGoogle Scholar
  4. 4.
    Shapiro AM, Lakey JR, Ryan EA, Korbutt GS, Toth E, Warnock GL, Kneteman NM, Rajotte RV. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 2000;343:230–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Shapiro AM, Ricordi C, Hering BJ, Auchincloss H, Lindblad R, Robertson RP, Secchi A, Brendel MD, Berney T, Brennan DC, et al. International trial of the Edmonton protocol for islet transplantation. N Engl J Med 2006;355:1318–30.PubMedCrossRefGoogle Scholar
  6. 6.
    Ryan EA, Lakey JR, Rajotte RV, Korbutt GS, Kin T, Imes S, Rabinovitch A, Elliott JF, Bigam D, Kneteman NM, et al. Clinical outcomes and insulin secretion after islet transplantation with the Edmonton protocol. Diabetes 2001;50:710–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Ryan EA, Paty BW, Senior PA, Bigam D, Alfadhli E, Kneteman NM, Lakey JR, Shapiro AM. Five-year follow-up after clinical islet transplantation. Diabetes 2005;54:2060–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Kemp CB, Knight MJ, Scharp DW, Ballinger WF, Lacy PE. Effect of transplantation site on the results of pancreatic islet isografts in diabetic rats. Diabetologia 1973;9:486–91.PubMedCrossRefGoogle Scholar
  9. 9.
    Largiader F, Kolb E, Binswanger U. A long-term functioning human pancreatic islet allotransplant. Transplantation 1980;29:76–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Najarian JS, Sutherland DE, Baumgartner D, Burke B, Rynasiewicz JJ, Matas AJ, Goetz FC. Total or near total pancreatectomy and islet autotransplantation for treatment of chronic pancreatitis. Ann Surg 1980;192:526–42.PubMedCrossRefGoogle Scholar
  11. 11.
    Sutherland DE, Matas AJ, Goetz FC, Najarian JS. Transplantation of dispersed pancreatic islet tissue in humans: autografts and allografts. Diabetes 29 Suppl 1980;1:31–44.Google Scholar
  12. 12.
    Scharp DW, Lacy PE, Santiago JV, McCullough CS, Weide LG, Falqui L, Marchetti P, Gingerich RL, Jaffe AS, Cryer PE, et al. Insulin independence after islet transplantation into type I diabetic patient. Diabetes 1990;39:515–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Toyofuku A, Yasunami Y, Nabeyama K, Nakano M, Satoh M, Matsuoka N, Ono J, Nakayama T, Taniguchi M, Tanaka M, Ikeda S. Natural killer T-cells participate in rejection of islet allografts in the liver of mice. Diabetes 2006;55:34–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Yasunami Y, Kojo S, Kitamura H, Toyofuku A, Satoh M, Nakano M, Nabeyama K, Nakamura Y, Matsuoka N, Ikeda S, et al. Valpha14 NK T cell-triggered IFN-gamma production by Gr-1+CD11b+ cells mediates early graft loss of syngeneic transplanted islets. J Exp Med 2005;202:913–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Carlsson PO, Palm F, Andersson A, Liss P. Markedly decreased oxygen tension in transplanted rat pancreatic islets irrespective of the implantation site. Diabetes 2001;50:489–95.PubMedCrossRefGoogle Scholar
  16. 16.
    Korsgren O, Lundgren T, Felldin M, Foss A, Isaksson B, Permert J, Persson NH, Rafael E, Ryden M, Salmela K, et al. Optimising islet engraftment is critical for successful clinical islet transplantation. Diabetologia 2008;51:227–32.PubMedCrossRefGoogle Scholar
  17. 17.
    Al-Jazaeri A, Xu, BY, Yang H, Macneil D, Leventhal JR, Wright JR, Jr. Effect of glucose toxicity on intraportal tilapia islet xenotransplantation in nude mice. Xenotransplantation 2005;12:189–196.PubMedCrossRefGoogle Scholar
  18. 18.
    Desai NM, Goss JA, Deng S, Wolf BA, Markmann E, Palanjian M, Shock AP, Feliciano S, Brunicardi FC, Barker CF, et al. Elevated portal vein drug levels of sirolimus and tacrolimus in islet transplant recipients: local immunosuppression or islet toxicity? Transplantation 2003;76:1623–5.PubMedCrossRefGoogle Scholar
  19. 19.
    Gupta V, Wahoff DC, Rooney DP, Poitout V, Sutherland DE, Kendall DM, Robertson RP. The defective glucagon response from transplanted intrahepatic pancreatic islets during hypoglycemia is transplantation site-determined. Diabetes 1997;46:28–33.PubMedCrossRefGoogle Scholar
  20. 20.
    Hafiz MM, Faradji RN, Froud T, Pileggi A, Baidal DA, Cure P, Ponte G, Poggioli R, Cornejo A, Messinger S, et al. Immunosuppression and procedure-related complications in 26 patients with type 1 diabetes mellitus receiving allogeneic islet cell transplantation. Transplantation 2005;80:1718–28.PubMedCrossRefGoogle Scholar
  21. 21.
    Maleux G, Gillard P, Keymeulen B, Pipeleers D, Ling Z, Heye S, Thijs M, Mathieu C, Marchal G. Feasibility, safety, and efficacy of percutaneous transhepatic injection of beta-cell grafts. J Vasc Interv Radiol 2005;16:1693–7.PubMedGoogle Scholar
  22. 22.
    Owen RJ, Ryan EA, O’Kelly K, Lakey JR, McCarthy MC, Paty BW, Bigam DL, Kneteman NM, Korbutt GS, Rajotte RV, Shapiro AM. Percutaneous transhepatic pancreatic islet cell transplantation in type 1 diabetes mellitus: radiologic aspects. Radiology 2003;229:165–70.PubMedCrossRefGoogle Scholar
  23. 23.
    Venturini M, Angeli E, Maffi P, Fiorina P, Bertuzzi F, Salvioni M, De Cobelli F, Socci C, Aldrighetti L, Losio C, et al. Technique, complications, therapeutic efficacy of percutaneous transplantation of human pancreatic islet cells in type 1 diabetes: the role of US. Radiology 2005;234:617–24.PubMedCrossRefGoogle Scholar
  24. 24.
    Neeman Z, Hirshberg B, Harlan D, Wood BJ. Radiologic aspects of islet cell transplantation. Curr Diabetes Rep 2006;6:310–5.CrossRefGoogle Scholar
  25. 25.
    Villiger P, Ryan EA, Owen R, O’Kelly K, Oberholzer J, Al Saif F, Kin T, Wang H, Larsen I, Blitz SL, et al. Prevention of bleeding after islet transplantation: lessons learned from a multivariate analysis of 132 cases at a single institution. Am J Transplant 2005;5:2992–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Meier JJ, Hong-McAtee I, Galasso R, Veldhuis JD, Moran A, Hering BJ, Butler PC. Intrahepatic transplanted islets in humans secrete insulin in a coordinate pulsatile manner directly into the liver. Diabetes 2006;55:2324–32.PubMedCrossRefGoogle Scholar
  27. 27.
    Meier JJ, Veldhuis JD, Butler PC. Pulsatile insulin secretion dictates systemic insulin delivery by regulating hepatic insulin extraction in humans. Diabetes 2005;54:1649–56.PubMedCrossRefGoogle Scholar
  28. 28.
    Polonsky KS, Given BD, Hirsch L, Shapiro ET, Tillil H, Beebe C, Galloway JA, Frank BH, Karrison T, Van Cauter E. Quantitative study of insulin secretion and clearance in normal and obese subjects. J Clin Invest 1988;81:435–41.PubMedCrossRefGoogle Scholar
  29. 29.
    Waldhausl W, Bratusch-Marrain P, Gasic S, Korn A, Nowotny P. Insulin production rate following glucose ingestion estimated by splanchnic C-peptide output in normal man. Diabetologia 1979;17:221–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Lau J, Jansson L, Carlsson PO. Islets transplanted intraportally into the liver are stimulated to insulin and glucagon release exclusively through the hepatic artery. Am J Transplant 2006;6:967–75.PubMedCrossRefGoogle Scholar
  31. 31.
    Kendall DM, Teuscher AU, Robertson RP. Defective glucagon secretion during sustained hypoglycemia following successful islet allo- and autotransplantation in humans. Diabetes 1997;46:23–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Zhou H, Zhang T, Bogdani M, Oseid E, Parazzoli S, Vantyghem MC, Harmon J, Slucca M, Robertson RP. Intrahepatic glucose flux as a mechanism for defective intrahepatic islet alpha-cell response to hypoglycemia. Diabetes 2008;57:1567–74.PubMedCrossRefGoogle Scholar
  33. 33.
    Mattsson G, Jansson L, Nordin A, Andersson A, Carlsson PO. Evidence of functional impairment of syngeneically transplanted mouse pancreatic islets retrieved from the liver. Diabetes 2004;53:948–54.PubMedCrossRefGoogle Scholar
  34. 34.
    Barshes NR, Lee TC, Goodpastor SE, Balkrishnan R, Schock AP, Mote A, Brunicardi FC, Alejandro R, Ricordi C, Goss JA. Transaminitis after pancreatic islet transplantation. J Am Coll Surg 2005a;200:353–61.PubMedCrossRefGoogle Scholar
  35. 35.
    Barshes NR, Wyllie S, Goss JA. Inflammation-mediated dysfunction and apoptosis in pancreatic islet transplantation: implications for intrahepatic grafts. J Leukoc Biol 2005b;77:587–97.PubMedCrossRefGoogle Scholar
  36. 36.
    Bertuzzi F, Marzorati S, Maffi P, Piemonti L, Melzi R, de Taddeo F, Valtolina V, D’Angelo A, di Carlo V, Bonifacio E, Secchi A. Tissue factor and CCL2/monocyte chemoattractant protein-1 released by human islets affect islet engraftment in type 1 diabetic recipients. J Clin Endocrinol Metabol 2004;89:5724–8.CrossRefGoogle Scholar
  37. 37.
    Bhargava R, Senior PA, Ackerman TE, Ryan EA, Paty BW, Lakey JR, Shapiro AM. Prevalence of hepatic steatosis after islet transplantation and its relation to graft function. Diabetes 2004;53:1311–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Contreras JL, Eckstein C, Smyth CA, Bilbao G, Vilatoba M, Ringland SE, Young C, Thompson JA, Fernandez JA, Griffin JH, Eckhoff DE. Activated protein C preserves functional islet mass after intraportal transplantation: a novel link between endothelial cell activation, thrombosis, inflammation, islet cell death. Diabetes 2004;53:2804–14.PubMedCrossRefGoogle Scholar
  39. 39.
    Eckhard M, Lommel D, Hackstein N, Winter D, Ziegler A, Rau W, Choschzick M, Bretzel RG, Brendel MD. Disseminated periportal fatty degeneration after allogeneic intraportal islet transplantation in a patient with type 1 diabetes mellitus: a case report. Transplant Proc 2004;36:1111–6.PubMedCrossRefGoogle Scholar
  40. 40.
    Hyon SH, Ceballos MC, Barbich M, Groppa R, Grosembacher L, Vieiro MM, Barcan L, Algranati S, Litwak L, Argibay PF. Effect of the embolization of completely unpurified islets on portal vein pressure and hepatic biochemistry in clinical practice. Cell Transplantation 2004;13:61–65.PubMedGoogle Scholar
  41. 41.
    Johansson H, Lukinius A, Moberg L, Lundgren T, Berne C, Foss A, Felldin M, Kallen R, Salmela K, Tibell A, et al. Tissue factor produced by the endocrine cells of the islets of Langerhans is associated with a negative outcome of clinical islet transplantation. Diabetes 2005a;54:1755–62.PubMedCrossRefGoogle Scholar
  42. 42.
    Moberg L, Johansson H, Lukinius A, Berne C, Foss A, Kallen R, Ostraat O, Salmela K, Tibell A, Tufveson G, et al. Production of tissue factor by pancreatic islet cells as a trigger of detrimental thrombotic reactions in clinical islet transplantation. Lancet 2002;360:2039–45.PubMedCrossRefGoogle Scholar
  43. 43.
    Rafael E, Ryan EA, Paty BW, Oberholzer J, Imes S, Senior P, McDonald C, Lakey JR, Shapiro AM. Changes in liver enzymes after clinical islet transplantation. Transplantation 2003;76:1280–4.PubMedCrossRefGoogle Scholar
  44. 44.
    Sudo T, Hiyama E, Murakami Y, Yokoyama Y, Takesue Y, Sueda T. Hepatic regeneration promotes engraftment of intraportally transplanted islet cells. Surgery 2005;137:612–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Yin D, Ding JW, Shen J, Ma, L, Hara M, Chong AS. Liver ischemia contributes to early islet failure following intraportal transplantation: benefits of liver ischemic-preconditioning. Am J Transplant 2006;6:60–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Contreras JL, Bilbao G, Smyth CA, Jiang XL, Eckhoff DE, Jenkins SM, Thomas FT, Curiel DT, Thomas JM. Cytoprotection of pancreatic islets before and soon after transplantation by gene transfer of the anti-apoptotic Bcl-2 gene. Transplantation 2001;71:1015–23.PubMedCrossRefGoogle Scholar
  47. 47.
    Casey JJ, Lakey JR, Ryan EA, Paty BW, Owen R, O’Kelly K, Nanji S, Rajotte RV, Korbutt GS, Bigam D, et al. Portal venous pressure changes after sequential clinical islet transplantation. Transplantation 2002;74:913–5.PubMedCrossRefGoogle Scholar
  48. 48.
    Morrison CP, Wemyss-Holden SA, Dennison AR, Maddern GJ. Islet yield remains a problem in islet autotransplantation. Arch Surg 2002;137:80–3.PubMedCrossRefGoogle Scholar
  49. 49.
    Jansson L. Dissociation between pancreatic islet blood flow and insulin release in the rat. Acta physiologica Scandinavica 1985;124:223–28.PubMedCrossRefGoogle Scholar
  50. 50.
    Jansson L. Glucose stimulation of pancreatic islet blood flow by redistribution of the blood flow within the whole pancreatic gland. Pancreas 1988;3:409–12.PubMedCrossRefGoogle Scholar
  51. 51.
    Jansson L. The regulation of pancreatic islet blood flow. Diabetes/Metabol Rev 1994;10:407–16.CrossRefGoogle Scholar
  52. 52.
    Menger MD, Yamauchi J, Vollmar B. Revascularization and microcirculation of freely grafted islets of Langerhans. World J Surg 2001;25:509–15.PubMedCrossRefGoogle Scholar
  53. 53.
    Mattsson G, Jansson L, Carlsson PO. Decreased vascular density in mouse pancreatic islets after transplantation. Diabetes 2002;51:1362–6.PubMedCrossRefGoogle Scholar
  54. 54.
    Andersson A, Korsgren O, Jansson L. Intraportally transplanted pancreatic islets revascularized from hepatic arterial system. Diabetes 1989;38 Suppl 1:192–5.PubMedGoogle Scholar
  55. 55.
    Ballian N, Brunicardi FC. Islet vasculature as a regulator of endocrine pancreas function. World J Surg 2007;31:705–14.PubMedCrossRefGoogle Scholar
  56. 56.
    Hart TK, Pino RM. Pseudoislet vascularization. Induction of diaphragm-fenestrated endothelia from the hepatic sinusoids. Laboratory Investigation; A J Tech Methods Pathol 1986;54:304–13.Google Scholar
  57. 57.
    Jansson L, Carlsson PO. Graft vascular function after transplantation of pancreatic islets. Diabetologia 2002;45:749–63.PubMedCrossRefGoogle Scholar
  58. 58.
    Brissova M, Fowler M, Wiebe P, Shostak A, Shiota M, Radhika A, Lin PC, Gannon M, Powers AC. Intraislet endothelial cells contribute to revascularization of transplanted pancreatic islets. Diabetes 2004;53:1318–25.PubMedCrossRefGoogle Scholar
  59. 59.
    Carlsson PO, Palm F, Mattsson G. Low revascularization of experimentally transplanted human pancreatic islets. J Clin Endocrinol Metabol 2002;87:5418–23.CrossRefGoogle Scholar
  60. 60.
    Shapiro AM, Gallant HL, Hao EG, Lakey JR, McCready T, Rajotte RV, Yatscoff RW, Kneteman NM. The portal immunosuppressive storm: relevance to islet transplantation? Therapeutic Drug Monitor 2005;27:35–7.CrossRefGoogle Scholar
  61. 61.
    Lee Y, Ravazzola M, Park BH, Bashmakov YK, Orci L, Unger RH. Metabolic mechanisms of failure of intraportally transplanted pancreatic beta-cells in rats: role of lipotoxicity and prevention by leptin. Diabetes 2007;56:2295–301.PubMedCrossRefGoogle Scholar
  62. 62.
    Hirshberg B, Mog S, Patterson N, Leconte J, Harlan DM. Histopathological study of intrahepatic islets transplanted in the nonhuman primate model using edmonton protocol immunosuppression. J Clin Endocrinol Metabol 2002;87:5424–9.CrossRefGoogle Scholar
  63. 63.
    Robertson RP, Harmon JS. Pancreatic islet beta-cell and oxidative stress: the importance of glutathione peroxidase. FEBS Lett 2007;581:3743–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Senior PA, Shapiro AM, Ackerman TE, Ryan EA, Paty BW, Bhargava R. Magnetic resonance-defined perinephric edema after clinical islet transplantation: a benign finding associated with mild renal impairment. Transplantation 2004;78:945–8.PubMedCrossRefGoogle Scholar
  65. 65.
    Lupi R, Dotta F, Marselli L, Del Guerra S, Masini M, Santangelo C, Patane G, Boggi U, Piro S, Anello M, et al. Prolonged exposure to free fatty acids has cytostatic and pro-apoptotic effects on human pancreatic islets: evidence that beta-cell death is caspase mediated, partially dependent on ceramide pathway, Bcl-2 regulated. Diabetes 2002;51:1437–42.PubMedCrossRefGoogle Scholar
  66. 66.
    Rafael E, Tibell A, Ryden M, Lundgren T, Savendahl L, Borgstrom B, Arnelo U, Isaksson B, Nilsson B, Korsgren O, Permert J. Intramuscular autotransplantation of pancreatic islets in a 7-year-old child: a 2-year follow-up. Am J Transplant 2008;8:458–62.PubMedCrossRefGoogle Scholar
  67. 67.
    Bennet W, Sundberg B, Groth CG, Brendel MD, Brandhorst D, Brandhorst H, Bretzel RG, Elgue G, Larsson R, Nilsson B, Korsgren O. Incompatibility between human blood and isolated islets of Langerhans: a finding with implications for clinical intraportal islet transplantation? Diabetes 1999;48:1907–14.PubMedCrossRefGoogle Scholar
  68. 68.
    Ozmen L, Ekdahl KN, Elgue G, Larsson R, Korsgren O, Nilsson B. Inhibition of thrombin abrogates the instant blood-mediated inflammatory reaction triggered by isolated human islets: possible application of the thrombin inhibitor melagatran in clinical islet transplantation. Diabetes 2002;51:1779–84.PubMedCrossRefGoogle Scholar
  69. 69.
    Colman RW, Scott CF. When and where is factor XI activated by thrombin? Blood 1996;87:2089.PubMedGoogle Scholar
  70. 70.
    Moberg L, Korsgren O, Nilsson B. Neutrophilic granulocytes are the predominant cell type infiltrating pancreatic islets in contact with ABO-compatible blood. Clin Exp Immunol 2005;142:125–31.PubMedCrossRefGoogle Scholar
  71. 71.
    Moberg L. The role of the innate immunity in islet transplantation. Ups J Med Sci 2005;110:17–55.PubMedCrossRefGoogle Scholar
  72. 72.
    Tiedge M, Lortz S, Drinkgern J, Lenzen S. Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cells. Diabetes 1997;46:1733–42.PubMedCrossRefGoogle Scholar
  73. 73.
    Chertov O, Yang D, Howard OM, Oppenheim JJ. Leukocyte granule proteins mobilize innate host defenses and adaptive immune responses. Immunol Rev 2000;177:68–78.PubMedCrossRefGoogle Scholar
  74. 74.
    Scapini P, Lapinet-Vera JA, Gasperini S, Calzetti F, Bazzoni F, Cassatella MA. The neutrophil as a cellular source of chemokines. Immunol Rev 2000;177:195–203.PubMedCrossRefGoogle Scholar
  75. 75.
    Piemonti L, Leone BE, Nano R, Saccani A, Monti P, Maffi P, Bianchi G, Sica A, Peri G, Melzi R, et al. Human pancreatic islets produce and secrete MCP-1/CCL2: relevance in human islet transplantation. Diabetes 2002;51:55–65.PubMedCrossRefGoogle Scholar
  76. 76.
    Sordi V, Malosio ML, Marchesi F, Mercalli A, Melzi R, Giordano T, Belmonte N, Ferrari G, Leone BE, Bertuzzi F, et al. Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood 2005;106:419–27.PubMedCrossRefGoogle Scholar
  77. 77.
    Johansson U, Olsson A, Gabrielsson S, Nilsson B, Korsgren O. Inflammatory mediators expressed in human islets of Langerhans: implications for islet transplantation. Biochem Biophys Res Commun 2003;308:474–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Badet L, Titus T, Metzen E, Handa A, McShane P, Chang LW, Giangrande P, Gray DW. The interaction between primate blood and mouse islets induces accelerated clotting with islet destruction. Xenotransplantation 2002;9:91–6.PubMedCrossRefGoogle Scholar
  79. 79.
    Melzi R, Sanvito F, Mercalli A, Andralojc K, Bonifacio E, Piemonti L. Intrahepatic islet transplant in the mouse: functional and morphological characterization. Cell Transplant 2008;17:1361–70.PubMedCrossRefGoogle Scholar
  80. 80.
    Cavalieri B, Mosca M, Ramadori P, Perrelli MG, De Simone L, Colotta F, Bertini R, Poli G, Cutrin JC. Neutrophil recruitment in the reperfused-injured rat liver was effectively attenuated by repertaxin a novel allosteric noncompetitive inhibitor of CXCL8 receptors: a therapeutic approach for the treatment of post-ischemic hepatic syndromes. Int J Immunopathol Pharmacol 2005;18:475–86.PubMedGoogle Scholar
  81. 81.
    Johansson H, Goto M, Dufrane D, Siegbahn A, Elgue G, Gianello P, Korsgren O, Nilsson B. Low molecular weight dextran sulfate: a strong candidate drug to block IBMIR in clinical islet transplantation. Am J Transplant 2006;6:305–12.PubMedCrossRefGoogle Scholar
  82. 82.
    Spirig R, Gajanayake T, Korsgren O, Nilsson B, Rieben R. Low molecular weight dextran sulfate as complement inhibitor and cytoprotectant in solid organ and islet transplantation. Mol Immunol 2008;45:4084–94.PubMedCrossRefGoogle Scholar
  83. 83.
    Goto M, Johansson H, Maeda A, Elgue G, Korsgren O, Nilsson B. Low-molecular weight dextran sulfate abrogates the instant blood-mediated inflammatory reaction induced by adult porcine islets both in vitro and in vivo. Transplant Proc 2004;36:1186–7.PubMedCrossRefGoogle Scholar
  84. 84.
    Beuneu C, Vosters O, Ling Z, Pipeleers D, Pradier O, Goldman M, Verhasselt V. N-Acetylcysteine derivative inhibits procoagulant activity of human islet cells. Diabetologia 2007;50:343–7.PubMedCrossRefGoogle Scholar
  85. 85.
    Vosters O, Beuneu C, Goldman M, Verhasselt V. N-acetylcysteine derivative inhibits CD40-dependent proinflammatory properties of human pancreatic duct cells. Pancreas 2008;36:363–8.PubMedCrossRefGoogle Scholar
  86. 86.
    Stabler CL, Sun XL, Cui W, Wilson JT, Haller CA, Chaikof EL. Surface re-engineering of pancreatic islets with recombinant azido-thrombomodulin. Bioconjugate Chem 2007;18:1713–5.CrossRefGoogle Scholar
  87. 87.
    Bennet W, Sundberg B, Lundgren T, Tibell A, Groth CG, Richards A, White DJ, Elgue G, Larsson R, Nilsson B, Korsgren O. Damage to porcine islets of Langerhans after exposure to human blood in vitro, or after intraportal transplantation to cynomolgus monkeys: protective effects of sCR1 and heparin. Transplantation 2000;69:711–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Lundgren T, Bennet W, Tibell A, Soderlund J, Sundberg B, Song Z, Elgue G, Harrison R, Richards A, White DJ, et al. Soluble complement receptor 1 (TP10) preserves adult porcine islet morphology after intraportal transplantation into cynomolgus monkeys. Transplant Proc 2001:33:725.PubMedCrossRefGoogle Scholar
  89. 89.
    Moberg L, Olsson A, Berne C, Felldin M, Foss A, Kallen R, Salmela K, Tibell A, Tufveson G, Nilsson B, Korsgren O. Nicotinamide inhibits tissue factor expression in isolated human pancreatic islets: implications for clinical islet transplantation. Transplantation 2003;76:1285–8.PubMedCrossRefGoogle Scholar
  90. 90.
    Cabric S, Sanchez J, Lundgren T, Foss A, Felldin M, Kallen R, Salmela K, Tibell A, Tufveson G, Larsson R, et al. Islet surface heparinization prevents the instant blood-mediated inflammatory reaction in islet transplantation. Diabetes 2007;56:2008–15.PubMedCrossRefGoogle Scholar
  91. 91.
    Johansson U, Elgue G, Nilsson B, Korsgren O. Composite islet-endothelial cell grafts: a novel approach to counteract innate immunity in islet transplantation. Am J Transplant 2005b;5:2632–.PubMedCrossRefGoogle Scholar
  92. 92.
    Kim HI, Yu, JE, Lee SY, Sul AY, Jang MS, Rashid MA, Park SG, Kim SJ, Park CG, Kim JH, Park KS. The effect of composite pig islet-human endothelial cell grafts on the instant blood-mediated inflammatory reaction. Cell Transplant 2009;18:31–7.PubMedCrossRefGoogle Scholar
  93. 93.
    Johansson U, Rasmusson I, Niclou SP, Forslund N, Gustavsson L, Nilsson B, Korsgren O, Magnusson PU. Formation of composite endothelial cell-mesenchymal stem cell islets: a novel approach to promote islet revascularization. Diabetes 2008;57:2393–401.PubMedCrossRefGoogle Scholar
  94. 94.
    Lewis EC, Mizrahi M, Toledano M, Defelice N, Wright JL, Churg A, Shapiro L, Dinarello CA. alpha1-Antitrypsin monotherapy induces immune tolerance during islet allograft transplantation in mice. Proc Natl Acad Sci USA 2008;105:16236–41.PubMedCrossRefGoogle Scholar
  95. 95.
    Weir GC, Koulamnda M. Control of inflammation with alpha1-antitrypsin: a potential treatment for islet transplantation and new-onset type 1 diabetes. Curr Diabetes Rep 2009;9:100–2.CrossRefGoogle Scholar
  96. 96.
    Zhang B, Lu, Y, Campbell-Thompson M, Spencer T, Wasserfall C, Atkinson M, Song S. Alpha1-antitrypsin protects beta-cells from apoptosis. Diabetes 2007;56:1316–23.PubMedCrossRefGoogle Scholar
  97. 97.
    Lund T, Fosby B, Korsgren O, Scholz H, Foss A. Glucocorticoids reduce pro-inflammatory cytokines and tissue factor in vitro and improve function of transplanted human islets in vivo. Transplant Int 2008;21:669–78.CrossRefGoogle Scholar
  98. 98.
    Marzorati S, Antonioli B, Nano R, Maffi P, Piemonti L, Giliola C, Secchi A, Lakey JR, Bertuzzi F. Culture medium modulates proinflammatory conditions of human pancreatic islets before transplantation. Am J Transplant 2006;6:2791–5.PubMedCrossRefGoogle Scholar
  99. 99.
    Brissova M, Shostak A, Shiota M, Wiebe PO, Poffenberger G, Kantz J, Chen Z, Carr C, Jerome WG, Chen J, et al. Pancreatic islet production of vascular endothelial growth factor – a is essential for islet vascularization, revascularization, function. Diabetes 2006;55: 2974–85.PubMedCrossRefGoogle Scholar
  100. 100.
    Zhang N, Richter A, Suriawinata J, Harbaran S, Altomonte J, Cong L, Zhang H, Song K, Meseck M, Bromberg J, Dong H. Elevated vascular endothelial growth factor production in islets improves islet graft vascularization. Diabetes 2004;53:963–70.PubMedCrossRefGoogle Scholar
  101. 101.
    Stagner JI, Samols E. Induction of angiogenesis by growth factors: relevance to pancreatic islet transplantation. EXS 1992;61:381–5.PubMedGoogle Scholar
  102. 102.
    Cheng K, Fraga D, Zhang C, Kotb M, Gaber AO, Guntaka RV, Mahato RI. Adenovirus-based vascular endothelial growth factor gene delivery to human pancreatic islets. Gene Ther 2004;11:1105–16.PubMedCrossRefGoogle Scholar
  103. 103.
    Mahato RI, Henry J, Narang AS, Sabek O, Fraga D, Kotb M, Gaber AO. Cationic lipid and polymer-based gene delivery to human pancreatic islets. Mol Ther 2003;7:89–100.PubMedCrossRefGoogle Scholar
  104. 104.
    Giannoukakis N, Rudert WA, Ghivizzani SC, Gambotto A, Ricordi C, Trucco M, Robbins PD. Adenoviral gene transfer of the interleukin-1 receptor antagonist protein to human islets prevents IL-1beta-induced beta-cell impairment and activation of islet cell apoptosis in vitro. Diabetes 1999;48:1730–6.PubMedCrossRefGoogle Scholar
  105. 105.
    Gysemans C, Stoffels K, Giulietti A, Overbergh L, Waer M, Lannoo M, Feige U, Mathieu C. Prevention of primary non-function of islet xenografts in autoimmune diabetic NOD mice by anti-inflammatory agents. Diabetologia 2003;46:1115–23.PubMedCrossRefGoogle Scholar
  106. 106.
    Dobson T, Fraga D, Saba C, Bryer-Ash M, Gaber AO, Gerling IC. Human pancreatic islets transfected to produce an inhibitor of TNF are protected against destruction by human leukocytes. Cell Transplant 2000;9:857–65.PubMedGoogle Scholar
  107. 107.
    Grey ST, Arvelo MB, Hasenkamp W, Bach FH, Ferran C. A20 inhibits cytokine-induced apoptosis and nuclear factor kappaB-dependent gene activation in islets. J Exp Medi 1999;190:1135–46.CrossRefGoogle Scholar
  108. 108.
    Rabinovitch A, Suarez-Pinzon W, Strynadka K, Ju, Q, Edelstein D, Brownlee M, Korbutt GS, Rajotte RV. Transfection of human pancreatic islets with an anti-apoptotic gene (bcl-2) protects beta-cells from cytokine-induced destruction. Diabetes 1999;48:1223–9.PubMedCrossRefGoogle Scholar
  109. 109.
    Pileggi A, Molano RD, Berney T, Cattan P, Vizzardelli C, Oliver R, Fraker C, Ricordi C, Pastori RL, Bach FH, Inverardi L. Heme oxygenase-1 induction in islet cells results in protection from apoptosis and improved in vivo function after transplantation. Diabetes 2001;50:1983–91.PubMedCrossRefGoogle Scholar
  110. 110.
    Tobiasch E, Gunther L, Bach FH. Heme oxygenase-1 protects pancreatic beta cells from apoptosis caused by various stimuli. J Investig Med 2001;49:566–71.PubMedCrossRefGoogle Scholar
  111. 111.
    George M, Ayuso E, Casellas A, Costa C, Devedjian JC, Bosch F. Beta cell expression of IGF-I leads to recovery from type 1 diabetes. J Clin Invest 2002a;109:1153–63.PubMedGoogle Scholar
  112. 112.
    Giannoukakis N, Mi, Z, Rudert WA, Gambotto A, Trucco M, Robbins P. Prevention of beta cell dysfunction and apoptosis activation in human islets by adenoviral gene transfer of the insulin-like growth factor I. Gene Ther 2000a;7: 2015–22.PubMedCrossRefGoogle Scholar
  113. 113.
    Carpenter L, Cordery D, Biden TJ. Protein kinase Cdelta activation by interleukin-1beta stabilizes inducible nitric-oxide synthase mRNA in pancreatic beta-cells. J Biol Chem 2001;276:5368–74.PubMedCrossRefGoogle Scholar
  114. 114.
    Dupraz P, Cottet S, Hamburger F, Dolci W, Felley-Bosco E, Thorens B. Dominant negative MyD88 proteins inhibit interleukin-1beta/interferon-gamma -mediated induction of nuclear factor kappa B-dependent nitrite production and apoptosis in beta cells. J Biol Chem 2000;275:37672–8.PubMedCrossRefGoogle Scholar
  115. 115.
    Wei JF, Zheng SS. NF-kappa B in allograft rejection. Hepatobiliary Pancreat Dis Int 2003;2:180–3.PubMedGoogle Scholar
  116. 116.
    Giannoukakis N, Rudert WA, Trucco M, Robbins PD. Protection of human islets from the effects of interleukin-1beta by adenoviral gene transfer of an Ikappa B repressor. J Biol Chem 2000b;275:36509–13.PubMedCrossRefGoogle Scholar
  117. 117.
    Burkart V, Liu H, Bellmann K, Wissing D, Jaattela M, Cavallo MG, Pozzilli P, Briviba K, Kolb H. Natural resistance of human beta cells toward nitric oxide is mediated by heat shock protein 70. J Biol Chem 2000;275:19521–28.PubMedCrossRefGoogle Scholar
  118. 118.
    Hohmeier HE, Thigpen A, Tran VV, Davis R, Newgard CB. Stable expression of manganese superoxide dismutase (MnSOD) in insulinoma cells prevents IL-1beta- induced cytotoxicity and reduces nitric oxide production. J Clin Invest 1998;101:1811–20.PubMedCrossRefGoogle Scholar
  119. 119.
    Benhamou PY, Moriscot C, Richard MJ, Beatrix O, Badet L, Pattou F, Kerr-Conte J, Chroboczek J, Lemarchand P, Halimi S. Adenovirus-mediated catalase gene transfer reduces oxidant stress in human, porcine and rat pancreatic islets. Diabetologia 1998;41:1093–100.PubMedCrossRefGoogle Scholar
  120. 120.
    Lepore DA, Shinkel TA, Fisicaro N, Mysore TB, Johnson LE, d’Apice AJ, Cowan PJ. Enhanced expression of glutathione peroxidase protects islet beta cells from hypoxia-reoxygenation. Xenotransplantation 2004;11:53–9.PubMedCrossRefGoogle Scholar
  121. 121.
    Moriscot C, Pattou F, Kerr-Conte J, Richard MJ, Lemarchand P, Benhamou PY. Contribution of adenoviral-mediated superoxide dismutase gene transfer to the reduction in nitric oxide-induced cytotoxicity on human islets and INS-1 insulin-secreting cells. Diabetologia 2000;43:625–31.PubMedCrossRefGoogle Scholar
  122. 122.
    Mysore TB, Shinkel TA, Collins J, Salvaris EJ, Fisicaro N, Murray-Segal LJ, Johnson LE, Lepore DA, Walters SN, Stokes R, et al. Overexpression of glutathione peroxidase with two isoforms of superoxide dismutase protects mouse islets from oxidative injury and improves islet graft function. Diabetes 2005;54:2109–16.PubMedCrossRefGoogle Scholar
  123. 123.
    Emamaullee JA, Rajotte RV, Liston P, Korneluk RG, Lakey JR, Shapiro AM, Elliott JF. XIAP overexpression in human islets prevents early posttransplant apoptosis and reduces the islet mass needed to treat diabetes. Diabetes 2005;54:2541–8.PubMedCrossRefGoogle Scholar
  124. 124.
    Plesner A, Liston P, Tan R, Korneluk RG, Verchere CB. The X-linked inhibitor of apoptosis protein enhances survival of murine islet allografts. Diabetes 2005;54:2533–40.PubMedCrossRefGoogle Scholar
  125. 125.
    Merani S, Toso C, Emamaullee J, Shapiro AM. Optimal implantation site for pancreatic islet transplantation. Br J Surg 2008;95:1449–61.PubMedCrossRefGoogle Scholar
  126. 126.
    Jindal RM, Sidner RA, McDaniel HB, Johnson MS, Fineberg SE. Intraportal vs kidney subcapsular site for human pancreatic islet transplantation. Transplant Proc 1998;30:398–9.PubMedCrossRefGoogle Scholar
  127. 127.
    Berman DM, O’Neil JJ, Coffey LC, Chaffanjon PC, Kenyon NM, Ruiz P, Jr, Pileggi A, Ricordi C, Kenyon NS. Long-term survival of nonhuman primate islets implanted in an omental pouch on a biodegradable scaffold. Am J Transplant 2009;9:91–104.PubMedCrossRefGoogle Scholar
  128. 128.
    Calafiore R, Basta G, Luca G, Lemmi A, Montanucci MP, Calabrese G, Racanicchi L, Mancuso F, Brunetti P. Microencapsulated pancreatic islet allografts into nonimmunosuppressed patients with type 1 diabetes: first two cases. Diabetes Care 2006;29:137–8.PubMedCrossRefGoogle Scholar
  129. 129.
    Fort A, Fort N, Ricordi C, Stabler CL. Biohybrid devices and encapsulation technologies for engineering a bioartificial pancreas. Cell Transplant 2008;17:997–1003.PubMedCrossRefGoogle Scholar
  130. 130.
    Kizilel S, Garfinkel M, Opara E. The bioartificial pancreas: progress and challenges. Diabetes Technol Therapeutics 2005;7:968–85.CrossRefGoogle Scholar
  131. 131.
    Kobayashi N. Bioartificial pancreas for the treatment of diabetes. Cell Transplant 2008;17:11–7.PubMedCrossRefGoogle Scholar
  132. 132.
    Maki T, Lodge JP, Carretta M, Ohzato H, Borland KM, Sullivan SJ, Staruk J, Muller TE, Solomon BA, Chick WL, et al. Treatment of severe diabetes mellitus for more than one year using a vascularized hybrid artificial pancreas. Transplantation 1993;55:713–7; discussion 717–8.PubMedCrossRefGoogle Scholar
  133. 133.
    Sun AM, Parisius W, Healy GM, Vacek I, Macmorine HG. The use, in diabetic rats and monkeys, of artificial capillary units containing cultured islets of Langerhans (artificial endocrine pancreas). Diabetes 1977;26:1136–9.PubMedCrossRefGoogle Scholar
  134. 134.
    de Vos P, van Hoogmoed CG, van Zanten J, Netter S, Strubbe JH, Busscher HJ. Long-term biocompatibility, chemistry, function of microencapsulated pancreatic islets. Biomaterials 2003;24:305–12.PubMedCrossRefGoogle Scholar
  135. 135.
    Zekorn T, Horcher A, Siebers U, Federlin K, Bretzel RG. Islet transplantation in immunoseparating membranes for treatment of insulin-dependent diabetes mellitus. Exp Clin Endocrinol Diabetes 103 Suppl 1995;2:136–9.CrossRefGoogle Scholar
  136. 136.
    Simpson NE, Khokhlova N, Oca-Cossio JA, McFarlane SS, Simpson CP, Constantinidis I. Effects of growth regulation on conditionally-transformed alginate-entrapped insulin secreting cell lines in vitro. Biomaterials 2005;26:4633–41.PubMedCrossRefGoogle Scholar
  137. 137.
    Balamurugan AN, Gu, Y, Tabata Y, Miyamoto M, Cui W, Hori H, Satake A, Nagata N, Wang W, Inoue K. Bioartificial pancreas transplantation at prevascularized intermuscular space: effect of angiogenesis induction on islet survival. Pancreas 2003;26:279–85.PubMedCrossRefGoogle Scholar
  138. 138.
    Wang T, Lacik I, Brissova M, Anilkumar AV, Prokop A, Hunkeler D, Green R, Shahrokhi K, Powers AC. An encapsulation system for the immunoisolation of pancreatic islets. Nature Biotechnol 1997;15:358–62.CrossRefGoogle Scholar
  139. 139.
    Xu B, Iwata H, Miyamoto M, Balamurugan AN, Murakami Y, Cui W, Imamura M, Inoue K. Functional comparison of the single-layer agarose microbeads and the developed three-layer agarose microbeads as the bioartificial pancreas: an in vitro study. Cell Transplant 2001;10:403–8.PubMedGoogle Scholar
  140. 140.
    George S, Nair PD, Risbud MV, Bhonde RR. Nonporous polyurethane membranes as islet immunoisolation matrices – biocompatibility studies. J Biomater Appl 2002b;16:327–40.PubMedCrossRefGoogle Scholar
  141. 141.
    Risbud M, Hardikar A, Bhonde R. Chitosan-polyvinyl pyrrolidone hydrogels as candidate for islet immunoisolation: in vitro biocompatibility evaluation. Cell Transplant 2000;9:25–31.PubMedGoogle Scholar
  142. 142.
    Risbud MV, Bhonde RR. Suitability of cellulose molecular dialysis membrane for bioartificial pancreas: in vitro biocompatibility studies. J Biomed Mater Res 2001;54:436–44.PubMedCrossRefGoogle Scholar
  143. 143.
    Isayeva IS, Kasibhatla BT, Rosenthal KS, Kennedy JP. Characterization and performance of membranes designed for macroencapsulation/implantation of pancreatic islet cells. Biomaterials 2003;24:3483–91.PubMedCrossRefGoogle Scholar
  144. 144.
    De Vos P, De Haan B, Van Schilfgaarde R. Effect of the alginate composition on the biocompatibility of alginate-polylysine microcapsules. Biomaterials 1997;18:273–8.PubMedCrossRefGoogle Scholar
  145. 145.
    Schneider S, Feilen PJ, Brunnenmeier F, Minnemann T, Zimmermann H, Zimmermann U, Weber MM. Long-term graft function of adult rat and human islets encapsulated in novel alginate-based microcapsules after transplantation in immunocompetent diabetic mice. Diabetes 2005;54:687–93.PubMedCrossRefGoogle Scholar
  146. 146.
    Sun Y, Ma, X, Zhou D, Vacek I, Sun AM. Normalization of diabetes in spontaneously diabetic cynomologus monkeys by xenografts of microencapsulated porcine islets without immunosuppression. J Clin Invest 1996;98:1417–22.PubMedCrossRefGoogle Scholar
  147. 147.
    de Groot M, Schuurs TA, van Schilfgaarde R. Causes of limited survival of microencapsulated pancreatic islet grafts. J Surg Res 2004;121:141–50.PubMedCrossRefGoogle Scholar
  148. 148.
    Safley SA, Kapp LM, Tucker-Burden C, Hering B, Kapp JA, Weber CJ. Inhibition of cellular immune responses to encapsulated porcine islet xenografts by simultaneous blockade of two different costimulatory pathways. Transplantation 2005;79:409–18.PubMedCrossRefGoogle Scholar
  149. 149.
    Soon-Shiong P, Feldman E, Nelson R, Heintz R, Yao Q, Yao Z, Zheng T, Merideth N, Skjak-Braek G, Espevik T, et al. Long-term reversal of diabetes by the injection of immunoprotected islets. Proc Natl Acad Sci USA 1993;90:5843–7.PubMedCrossRefGoogle Scholar
  150. 150.
    Blomeier H, Zhang X, Rives C, Brissova M, Hughes E, Baker M, Powers AC, Kaufman DB, Shea LD, Lowe WL, Jr. Polymer scaffolds as synthetic microenvironments for extrahepatic islet transplantation. Transplantation 2006;82:452–9.PubMedCrossRefGoogle Scholar
  151. 151.
    Dufour JM, Rajotte RV, Zimmerman M, Rezania A, Kin T, Dixon DE, Korbutt GS. Development of an ectopic site for islet transplantation, using biodegradable scaffolds. Tissue Eng 2005;11:1323–31.PubMedCrossRefGoogle Scholar
  152. 152.
    Kin T, O’Neil JJ, Pawlick R, Korbutt GS, Shapiro AM, Lakey JR. The use of an approved biodegradable polymer scaffold as a solid support system for improvement of islet engraftment. Artificial Organs 2008;32:990–3.PubMedCrossRefGoogle Scholar
  153. 153.
    Salvay DM, Rives CB, Zhang X, Chen F, Kaufman DB, Lowe WL, Jr, Shea LD. Extracellular matrix protein-coated scaffolds promote the reversal of diabetes after extrahepatic islet transplantation. Transplantation 2008;85:1456–64.PubMedCrossRefGoogle Scholar
  154. 154.
    Langer R, Vacanti JP. Tissue engineering. Science New York, NY 1993;260:920–6.CrossRefGoogle Scholar
  155. 155.
    Putnam AJ, Mooney DJ. Tissue engineering using synthetic extracellular matrices. Nat Med 1996;2:824–6.PubMedCrossRefGoogle Scholar
  156. 156.
    Lee DY, Yang K, Lee S, Chae SY, Kim KW, Lee MK, Han DJ, Byun Y. Optimization of monomethoxy-polyethylene glycol grafting on the pancreatic islet capsules. J Biomed Mater Res 2002;62:372–77.PubMedCrossRefGoogle Scholar
  157. 157.
    Panza JL, Wagner WR, Rilo HL, Rao RH, Beckman EJ, Russell AJ. Treatment of rat pancreatic islets with reactive PEG. Biomaterials 2000;21:1155–64.PubMedCrossRefGoogle Scholar
  158. 158.
    Xie D, Smyth CA, Eckstein C, Bilbao G, Mays J, Eckhoff DE, Contreras JL. Cytoprotection of PEG-modified adult porcine pancreatic islets for improved xenotransplantation. Biomaterials 2005;26:403–12.PubMedCrossRefGoogle Scholar
  159. 159.
    Krol S, del Guerra S, Grupillo M, Diaspro A, Gliozzi A, Marchetti P. Multilayer nanoencapsulation. New approach for immune protection of human pancreatic islets. Nano Lett 2006;6:1933–9.PubMedCrossRefGoogle Scholar
  160. 160.
    Weber LM, Cheung CY, Anseth KS. Multifunctional pancreatic islet encapsulation barriers achieved via multilayer PEG hydrogels. Cell Transplant 2008;16:1049–57.PubMedCrossRefGoogle Scholar
  161. 161.
    Wilson JT, Cui W, Chaikof EL. Layer-by-layer assembly of a conformal nanothin PEG coating for intraportal islet transplantation. Nano Lett 2008;8:1940–8.PubMedCrossRefGoogle Scholar
  162. 162.
    Teramura Y, Iwata H. Islets surface modification prevents blood-mediated inflammatory responses. Bioconjugate Chem 2008;19:1389–95.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Lorenzo Piemonti
    • 1
  • Luca G. Guidotti
    • 1
  • Manuela Battaglia
    • 1
  1. 1.San Raffaele Diabetes Research Institute (HSR-DRI)MilanoItaly

Personalised recommendations