Advertisement

Fracture of Brittle Lattice Materials: A Review

  • Ignacio Quintana-AlonsoEmail author
  • Norman A. Fleck

Abstract

The mechanics of failure for elastic-brittle lattice materials is reviewed. Closed-form expressions are summarized for fracture toughness as a function of relative density for a wide range of periodic lattices. A variety of theoretical and numerical approaches has been developed in the literature and in the main the predictions coincide for any given topology. However, there are discrepancies and the underlying reasons for these are highlighted. The role of imperfections at the cell wall level can be accounted for by Weibull analysis. Nevertheless, defects can also arise on the meso-scale in the form of misplaced joints, wavy cell walls and randomly distributed missing cell walls. These degrade the macroscopic fracture toughness of the lattice.

Keywords

Fracture Toughness Fracture Property Crack Length Linear Elastic Fracture Mechanic Hexagonal Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Gibson LJ, Ashby MF (1997) Cellular solids:structure and properties, 2nd edition, Pergamon, Oxford.Google Scholar
  2. 2.
    Christensen RM (2000) Mechanics of cellular and other low-density materials. Int J Solids Struct 37(1–2):93–104.CrossRefGoogle Scholar
  3. 3.
    Wang A-J, McDowell DL (2004) In-plane stiffness and yield strength of periodic metal honeycombs. J Eng Mater Technol 126(2):137–156.CrossRefGoogle Scholar
  4. 4.
    Guo XE, Gibson LJ (1999) Behavior of intact and damaged honeycombs:a finite element study. Int J Mech Sci 41(1):85–105.CrossRefGoogle Scholar
  5. 5.
    Chen C, Lu TJ, Fleck NA (2001) Effect of inclusions and holes on the stiffness and strength of honeycombs. Int J Mech Sci 43(2):487–504.CrossRefGoogle Scholar
  6. 6.
    Silva MJ, Gibson LJ (1997) The effects of non-periodic microstructure and defects on the compressive strength of two-dimensional cellular solids. Int J Mech Sci 39(5):549–563.CrossRefGoogle Scholar
  7. 7.
    Alburquerque JM, Fátima Vaz M, Fortes MA (1999) Effect of missing walls on the compression behaviour of honeycombs. Scripta Mater 41(2):167–174.CrossRefGoogle Scholar
  8. 8.
    Andrews EW, Gibson LJ (2001) The influence of cracks, notches and holes on the tensile strength of cellular solids. Acta Mater 49(15):2975–2979.CrossRefGoogle Scholar
  9. 9.
    Chen C, Lu TJ, Fleck NA (1999) Effect of imperfections on the yielding of two-dimensional foams. J Mech Phys Solids 47(11):2235–2272.CrossRefGoogle Scholar
  10. 10.
    Ashby MF (1983) The mechanical properties of cellular solids. Metall Trans 14(9):1755–1769.CrossRefGoogle Scholar
  11. 11.
    Maiti SK, Ashby MF, Gibson LJ (1984) Fracture toughness of brittle cellular solids. Scripta Metall 18(3):213–217.CrossRefGoogle Scholar
  12. 12.
    Davidge RW (1979) Mechanical behaviour of ceramics, Cambridge University Press, Cambridge.Google Scholar
  13. 13.
    Huang JS, Lin JY (1996) Mixed-mode fracture of brittle cellular materials. J Mat Sci 31(10):2647–2652.CrossRefGoogle Scholar
  14. 14.
    Fleck NA, Qiu X (2007) The damage tolerance of elastic-brittle, two dimensional isotropic lattices. J Mech Phys Solids 55(3):562–588.CrossRefGoogle Scholar
  15. 15.
    Quintana-Alonso I, Fleck NA (2007) Damage tolerance of an elastic-brittle diamond-celled honeycomb. Scripta Mater 56(8):693–696.CrossRefGoogle Scholar
  16. 16.
    Weibull W (1951) A statistical distribution function of wide applicability. J Appl Mech 18:293–297.Google Scholar
  17. 17.
    Huang JS, Gibson LJ (1991) Fracture toughness of brittle honeycombs. Acta Metall Mater 39(7):1617–1626.CrossRefGoogle Scholar
  18. 18.
    Huang JS, Chou CY (1999) Survival probability for brittle honeycombs under in-plane biaxial loading. J Mat Sci 34(20):4945–4954.CrossRefGoogle Scholar
  19. 19.
    Gibson LJ, Ashby MF, Zhang J, Triantafillou TC (1989) Failure surfaces for cellular materials under multiaxial loads –I. Modelling. Int J Mech Sci 31(9):635–663.CrossRefGoogle Scholar
  20. 20.
    Quintana-Alonso I, Fleck NA (2008) The damage tolerance of a sandwich panel containing a cracked honeycomb core. J Appl Mech in press.Google Scholar
  21. 21.
    Chen JY, Huang Y, Ortiz M (1998) Fracture analysis of cellular materials:a strain gradient model. J Mech Phys Solids 46(5):789–828.CrossRefGoogle Scholar
  22. 22.
    Banks CB, Sokolowski M (1968) On certain two-dimensional applications of the couple stress theory. Int J Solids Struct 4:15–29.CrossRefGoogle Scholar
  23. 23.
    Bazant ZP, Christensen M (1972) Analogy between micropolar continuum and grid frameworks under initial stress. Int J Solids Struct 8(3):327–346.CrossRefGoogle Scholar
  24. 24.
    Antipov YA, Kolaczkowski ST, Movchan AB, Spence A (2000) Asymptotic analysis for cracks in a catalytic monolith combustor. Int J Solids Struct 37(13):1899–1930.CrossRefGoogle Scholar
  25. 25.
    Antipov YA, Movchan AB, Kolaczkowski ST (2001) Models of fracture of cellular monolith structures. Int J Solids Struct 38(10–13):1659–1668.CrossRefGoogle Scholar
  26. 26.
    Kumar RS, McDowell DL (2004) Generalized continuum modeling of 2-D periodic cellular solids. Int J Solids Struct 41(26):7399–7422.CrossRefGoogle Scholar
  27. 27.
    ASTM E399 –(2006) Standard test method for linear-elastic plane-strain fracture toughness KIC of metallic materials.Google Scholar
  28. 28.
    Huang JS, Chiang MS (1996) Effects of microstructure, specimen and loading geometries on KIC of brittle honeycombs. Eng Fract Mech 54(6):813–821.CrossRefGoogle Scholar
  29. 29.
    Quintana-Alonso I, Mai SP, Fleck NA, Oakes DCH, Twigg MV (2009) Fracture toughness measurements of a cordierite lattice. Submitted to Acta Mater.Google Scholar
  30. 30.
    Schmidt I, Fleck NA (2001) Ductile fracture of two-dimensional cellular structures. Int J Fract 111(4):327–342.CrossRefGoogle Scholar
  31. 31.
    Quintana-Alonso I, Fleck NA (2008) Compressive response of a sandwich plate containing a cracked diamond lattice. Submitted to J Mech Phys Solids.Google Scholar
  32. 32.
    Fleck NA, Kang KJ, Ashby MF (1994) The cyclic properties of engineering materials. Acta Metall Mater 42(2):365–381.CrossRefGoogle Scholar
  33. 33.
    Fleck NA (1986) Finite element analysis of plasticity-induced crack closure under plane strain conditions. Eng Fract Mech 25(4):441–449.CrossRefGoogle Scholar
  34. 34.
    Shercliff HR, Fleck NA (1990) Effect of specimen geometry on fatigue crack growth in plane strain:II –overload response. Fatigue Fract Eng Mater Struct 13(3):287–296.CrossRefGoogle Scholar
  35. 35.
    Choi S, Sankar B (2005) A micromechanical method to predict the fracture toughness of cellular materials. Int J Solids Struct 42(5–6):1797–1817.CrossRefGoogle Scholar
  36. 36.
    Romijn NE, Fleck NA (2007) The fracture toughness of planar lattices:imperfection sensitivity. J Mech Phys Solids 55(12):2538–2564.CrossRefGoogle Scholar
  37. 37.
    Symons DD, Fleck NA (2008) The imperfection sensitivity of isotropic two-dimensional elastic lattices. J Appl Mech 75:051011.CrossRefGoogle Scholar
  38. 38.
    Deshpande VS, Fleck NA, Ashby MF (2001) Foam topology:bending versus stretching dominated architectures. Acta Mater 49(6):1035–1040.CrossRefGoogle Scholar
  39. 39.
    Slepyan LI (2002) Models and phenomena in fracture mechanics, Springer, Berlin.Google Scholar
  40. 40.
    Slepyan LI (1981) Dynamics of a crack in a lattice. Soviet Phys Doklady 26(5):538–540.Google Scholar
  41. 41.
    Kulakhmetova SA, Saraikin VA, Slepyan LI (1984) Plane problem of a crack in a lattice. Mech Solids 19(3):102–108.Google Scholar
  42. 42.
    Slepyan LI (2005) Crack in a material-bond lattice. J Mech Phys Solids 53(6):1295–1313.CrossRefGoogle Scholar
  43. 43.
    Lipperman F, Ryvkin M, Fuchs MB (2007) Nucleation of cracks in two-dimensional periodic cellular materials. Comput Mech 39(2):127–139.CrossRefGoogle Scholar
  44. 44.
    Lipperman F, Ryvkin M, Fuchs MB (2007) Fracture toughness of two-dimensional cellular material with periodic microstructure. Int J Fract 146(4):279–290.CrossRefGoogle Scholar
  45. 45.
    Ryvkin M, Fuchs MB, Lipperman F, Kucherov L (2004) Fracture analysis of materials with periodic microstructure by the representative cell method. Int J Fract 128(1–4):215–221.CrossRefGoogle Scholar
  46. 46.
    Renton J (1966) On the analysis of triangular mesh grillages. Int J Solids Struct 2:307–318.CrossRefGoogle Scholar
  47. 47.
    Slepyan LI, Ayzenberg-Stepanenko MV (2002) Some surprising phenomena in weak-bond fracture of a triangular lattice. J Mech Phys Solids 50(8):1591–1625.CrossRefGoogle Scholar
  48. 48.
    Lipperman F, Ryvkin M, Fuchs MB (2008) Crack arresting low-density porous materials with periodic microstructure. Int J. Eng Sci 46(6):572–584.CrossRefGoogle Scholar
  49. 49.
    Scheffler M, Colombo P (eds.) (2005) Cellular ceramics:structure, manufacturing, properties and applications, Wiley, Weinheim.Google Scholar
  50. 50.
    Strawley JE (1976) Wide range stress intensity factor expressions for ASTM E399 standard fracture toughness specimens. Int J Fract 12(6):475–476.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Cambridge University Engineering DepartmentCambridgeUK

Personalised recommendations