Protein Kinases and Phosphatases for Stress Signal Transduction in Plants

  • Lee Chae
  • Girdhar K Pandey
  • Sheng Luan
  • Yong Hwa Cheong
  • Kyung-Nam Kim


Adverse environmental conditions that threaten plant growth and development are known as environmental stresses. To survive stress, plants employ a complex set of distinct signaling pathways that trigger stress-specific tolerance or avoidance in the organism as a whole. An important biochemical mechanism for regulating such pathways is reversible protein phosphorylation. In this process, the activity of a pathway is modulated through either the addition or removal of phosphate groups to individual pathway components. Protein kinases and protein phosphatases often act in tandem to perform the phosphorylation and de-phosphorylation process. Here, we’ll review recent progress made in understanding several of the large gene families that encode protein kinases and phosphatases involved in stress signaling in plants. In particular, we discuss the receptor-like kinase, mitogen-activated protein kinases, and calcium-regulated protein kinase gene families, as well as the three major phosphatase-related gene families: protein phosphatase P, protein phosphatase M, and protein tyrosine phosphatases.


development hormone signaling kinase MAPK phosphatase 



tryosine specific PTP




brassinosteroid insensitive




CaM-dependent protein kinases


calcineurin B-like proteins


calcium and calmodulin dependent kinase


calcium dependent protein kinases


chitinase receptor kinase 1


CBL-interacting protein kinases


1 clavata 1


dual specificity phosphatases


enhanced disease resistance


epidermal growth factor


excess micro-sporocytes


extracellular signal regulated kinase


ethylene responsive element binding proteins


extra sporogenous cells


forkhead-associated domain


flagellin-sensitive 2


soybean nodule autoregulator receptor kinase


hypernodulation abberrant root


hypersensitive response


jasmonic acid


kinase associated protein phosphatase


leucine-rich repeat


mitogen-activated protein kinase


nodulation receptor kinase


1 oxidative stress-activated MAP triple kinase 1


2C-protein phosphatases


poltergeist phosphatase gene


protein phosphatase M


protein phosphatase P


pathogen related


protein tyrosine phosphatase


plant receptor-like kinases


reactive oxygen species


receptor tyrosine kinases


salicylic acid


symbiosis receptor-like kinase


tumor necrosis factor receptor


wall associated kinase


  1. Agrawal GK, Iwahashi H, Rakwal R (2003) Rice MAPKs. Biochem Biophys Res Commun 302:171-180PubMedCrossRefGoogle Scholar
  2. Ahlfors R, Macioszek V, Rudd J, Brosche M, Schlichting R, Scheel D, Kangasjarvi J (2004) Stress hormone-independent activation and nuclear translocation of mitogen-activated protein kinases in Arabidopsis thaliana during ozone exposure. Plant J 40:512-522PubMedCrossRefGoogle Scholar
  3. Ahn NG, Seger R, Krebs EG (1992) The mitogen-activated protein kinase activator. Curr Opin Cell Biol 4:992-999PubMedCrossRefGoogle Scholar
  4. Albrecht V, Ritz O, Linder S, Harter K, Kudla J (2001) The NAF domain defines a novel protein-protein interaction module conserved in Ca2+-regulated kinases. EMBO J 20:1051-1063PubMedCrossRefGoogle Scholar
  5. Albrecht V, Weinl S, Blazevic D, D’Angelo C, Batistic O, Kolukisaoglu U, Bock R, Schulz B, Harter K, Kudla J (2003) The calcium sensor CBL1 integrates plant responses to abiotic stresses. Plant J 36:457-470PubMedCrossRefGoogle Scholar
  6. Allen GJ, Sanders D (1995) Calcineurin, a type 2B protein phosphatase, modulates the Ca-2C-permeable slow vacuolar ion channel of stomatal guard cells. Plant Cell 7:1473-1483PubMedGoogle Scholar
  7. Allen GJ, Kuchitsu K, Chu SP, Murata Y, Schroeder JI (1999) Arabidopsis abi1-1 and abi2-1 phosphatase mutations reduce abscisic acid-induced cytoplasmic calcium rises in guard cells. Plant Cell 11:1785-1798PubMedGoogle Scholar
  8. Anderson CM, Wagner TA, Perret M, He ZH, He D, Kohorn BD (2001) WAKs: cell wall-associated kinases linking the cytoplasm to the extracellular matrix. Plant Mol Biol 47:197-206PubMedCrossRefGoogle Scholar
  9. Andreasson E, Jenkins T, Brodersen P, Thorgrimsen S, Petersen NH, Zhu S, Qiu JL, Micheelsen P, Rocher A, Petersen M, Newman MA, Bjorn Nielsen H, Hirt H, Somssich I, Mattsson O, Mundy J (2005) The MAP kinase substrate MKS1 is a regulator of plant defense responses. EMBO J 24:2579-2589PubMedCrossRefGoogle Scholar
  10. Andreeva AV, Kutuzov MA (1999) RdgC/PP5-related phosphatases: novel components in signal transduction. Cell Signal 11:555-562PubMedCrossRefGoogle Scholar
  11. Anil VS, Harmon AC, Rao KS (2003) Temporal association of Ca2+-dependent protein kinase with oil bodies during seed development in Santalum album L.: its biochemical characterization and significance. Plant Cell Physiol 44:367-376PubMedCrossRefGoogle Scholar
  12. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress and signal transduction. Annu Rev Plant Biol 55:373-399PubMedCrossRefGoogle Scholar
  13. Arino J, Perez-Callejon E, Cunillera N, Camps M, Posas F, Ferrer A (1993) Protein phosphatases in higher plants multiplicity of Type 2a phosphatases in Arabidopsis thaliana. Plant Mol Biol 21:475-485PubMedCrossRefGoogle Scholar
  14. Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP Kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977-983PubMedCrossRefGoogle Scholar
  15. Asano T, Tanaka N, Yang G, Hayashi N, Komatsu S (2005) Genome-wide identification of the rice calcium-dependent protein kinase and its closely related kinase gene families: comprehensive analysis of the CDPKs gene family in rice. Plant Cell Physiol 46:356-366PubMedCrossRefGoogle Scholar
  16. Bassett CL, Nickerson ML, Cohen RA, Rajeevan MS (2000) Alternative transcript initiation and novel post-transcriptional processing of a leucine-rich repeat receptor-like protein kinase gene that responds to short-day photoperiodic floral induction in morning glory (Ipomoea nil). Plant Mol Biol 43:43-58PubMedCrossRefGoogle Scholar
  17. Bateman A, Bycroft M (2000) The structure of a LysM domain from E. coli membrane-bound lytic murine transglycosylase D (MltD). J Mol Biol 299:1113-1119PubMedCrossRefGoogle Scholar
  18. Batistic O, Kudla J (2004) Integration and channeling of calcium signaling through the CBL calcium sensor/CIPK protein kinase network. Planta 219:915-924PubMedCrossRefGoogle Scholar
  19. Becraft PW, Stinard PS, McCarty DR (1996) CRINKLY4: A TNFR-like receptor kinase involved in maize epidermal differentiation. Science 273:1406-1409PubMedCrossRefGoogle Scholar
  20. Belkhadir Y, Chory J (2006) Brassinosteroid signaling: a paradigm for steroid hormone signaling from the cell surface. Science 314:1410-1411PubMedCrossRefGoogle Scholar
  21. Bergmann DC, Lukowitz W, Somerville CR, (2004) Stomatal development and pattern controlled by a MAPKK kinase. Science 304:1494-1497Google Scholar
  22. Bethke PC, Jones RL (1997) Reversible protein phospho­rylation regulates the activity of the slow-vacuolar ion channel. Plant J 11:1227-1235CrossRefGoogle Scholar
  23. Bogre L, Ligterink W, Meskiene I, Barker PJ, Heberle-Bors E, Huskisson NS, Hirt H (1997) Wounding induces the rapid and transient activation of a specific MAP kinase pathway. Plant Cell 9:75-83PubMedGoogle Scholar
  24. Bogre L, Calderini O, Binarova P, Mattauch M, Till S, Kiegerl S, Jonak C, Pollaschek C, Barker P, Huskisson NS, Hirt H, Heberle-Bors E (1999) A MAP Kinase is activated late in plant mitosis and becomes localized to the plane of cell division. Plant Cell 11:101-113PubMedGoogle Scholar
  25. Brand U, Fletcher JC, Hobe M, Meyerowitz EM, Simon R (2000) Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science 289:617-619PubMedCrossRefGoogle Scholar
  26. Brodersen P, Petersen M, Bjorn Nielsen H, Zhu S, Newman MA, Shokat KM, Rietz S, Parker J, Mundy J (2006) Arabidopsis MAP Kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4. Plant J 47:532-546PubMedCrossRefGoogle Scholar
  27. Burnett EC, Desikan R, Moser RC, Neill SJ (2000) ABA activation of an MBP kinase in Pisum sativum epidermal peels correlates with stomatal responses to ABA. J Exp Bot 51:197-205PubMedCrossRefGoogle Scholar
  28. Calderini O, Bogre L, Vicente O, Binarova P, Heberle-Bors E, Wilson C (1998) A cell cycle regulated MAP Kinase with a possible role in cytokinesis in tobacco cells. J Cell Sci 111:3091-3100PubMedGoogle Scholar
  29. Calderini O, Glab N, Bergounioux C, Heberle-Bor E, Wilson C (2001) A novel tobacco mitogen-activated protein (MAP) kinase kinase, NtMEK1, activates the cell cycle-regulated p43Ntf6 MAP kinase. J Biol Chem 276:18139-18145PubMedCrossRefGoogle Scholar
  30. Camilleri C, Azimzadeh J, Pastuglia M, Bellini C, Grandjean O, Bouchez D (2002) The Arabidopsis TONNEAU2 gene encodes a putative novel protein phosphatase 2A regulatory subunit essential for the control of the cortical cytoskeleton. Plant Cell 14:833-845PubMedCrossRefGoogle Scholar
  31. Canales C, Bhatt AM, Scott R, Dickinson H (2002) EXS, a putative LRR receptor kinase, regulates male germline cell number and tapetal identity and promotes seed development in Arabidopsis. Curr Biol 12:1718-1727PubMedCrossRefGoogle Scholar
  32. Cano-Delgado A, Yin Y, Yu C, Vafeados D, Mora-Garcia S, Cheng JC, Nam KH, Li J, Chory J (2004) BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis. Development 131:5341-5351PubMedCrossRefGoogle Scholar
  33. Cardinale F, Meskiene I, Ouaked F, Hirt H (2002) Convergence and divergence of stress-induced mitogen-activated protein kinase signaling pathways at the level of two distinct mitogen-activated protein kinase kinases. Plant Cell 14:703-711PubMedGoogle Scholar
  34. Casamayor A, Perez-Callejon E, Pujol G, Arino J, Ferrer A (1994) Molecular characterization of a fourth isoform of the catalytic subunit of protein phosphatase 2A from Arabidopsis thaliana. Plant Mol Biol 26:523-528PubMedCrossRefGoogle Scholar
  35. Chandran V, Stollar EJ, Lindorff-Larsen K, Harper JF, Chazin WJ, Dobson CM, Luisi BF, Christodoulou J (2006) Structure of the regulatory apparatus of a calcium-dependent protein kinase (CDPK): a novel mode of calmodulin-target recognition. J Mol Biol 357:400-410PubMedCrossRefGoogle Scholar
  36. Chang C (2003) Ethylene signaling: the MAPK module has finally landed. Trends Plant Sci 8:365-368PubMedCrossRefGoogle Scholar
  37. Chang L, Karin M (2001) Mammalian MAP kinase signaling cascades. Nature 410:37-40PubMedCrossRefGoogle Scholar
  38. Chen X, Shang J, Chen D, Lei C, Zou Y, Zhai W, Liu G, Xu J, Ling Z, Cao G, Ma B, Wang Y, Zhao X, Li S, Zhu L (2006) A B-lectin receptor kinase gene conferring rice blast resistance. Plant J 46:794-804PubMedCrossRefGoogle Scholar
  39. Cheng SH, Willmann MR, Chen HC, Sheen J (2002) Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol 129:469-485PubMedCrossRefGoogle Scholar
  40. Cheong YH, Kim KN, Pandey GK, Gupta R, Grant JJ, Luan S (2003a) CBL1, a calcium sensor that differentially regulates salt, drought and cold responses in Arabidopsis. Plant Cell 15:1833-1845PubMedCrossRefGoogle Scholar
  41. Cheong YH, Moon BC, Kim JK, Kim CY, Kim MC, Kim IH, Park CY, Kim JC, Park BO, Koo SC, Yoon HW, Chung WS, Lim CO, Lee SY, Cho MJ (2003b) BWMK1, a rice mitogen-activated protein kinase, locates in the nucleus and mediates pathogenesis-related gene expression by activation of a transcription factor. Plant Physiol 132:1961-1972PubMedCrossRefGoogle Scholar
  42. Cherel I, Michard E, Platet N, Mouline K, Alcon C, Sentenac H, Thibaud JB (2002) Physical and functional interaction of the Arabidopsis K+ channel AKT2 and phosphatase AtPP2CA. Plant Cell 14:1133-1146PubMedCrossRefGoogle Scholar
  43. Chernoff J (1999) Protein tyrosine phosphatases as negative regulators of mitogenic signaling. J Cell Physiol 180:173-181PubMedCrossRefGoogle Scholar
  44. Chinchilla D, Bauer Z, Regenass M, Boller T, Felix G (2006) The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. Plant Cell 18:465-476PubMedCrossRefGoogle Scholar
  45. Chono M, Honda I, Zeniya H, Yoneyama K, Saisho D, Takeda K, Takatsuto S, Hoshino T, Watanabe Y (2003) A semi-dwarf phenotype of barley uzu results from a nucleotide substitution in the gene encoding a putative brassinosteroid receptor. Plant Physiol 133:1209-1219PubMedCrossRefGoogle Scholar
  46. Clark SE, Running MP, Meyerowitz EM (1993) CLAVATA1, a regulator of meristem and flower development in Arabidopsis. Development 119:397-418PubMedGoogle Scholar
  47. Clark SE, Williams RW, Meyerowitz EM (1997) The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell 89:575-585PubMedCrossRefGoogle Scholar
  48. Clouse SD, Sasse JM (1998) Brassinosteroids: essential regulators of plant growth and development. Annu Rev Plant Physiol Plant Mol Biol 49:427-451PubMedCrossRefGoogle Scholar
  49. Clouse SD, Langford M, McMorris TC (1996) A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiol 111:671-678PubMedCrossRefGoogle Scholar
  50. Cohen P. (1989) The structure and regulation of protein phosphatases. Annu Rev.; biochem 58:453-508PubMedCrossRefGoogle Scholar
  51. Dai Y, Wang H, Li B, Huang J, Liu X, Zhou Y, Mou Z, Li J (2006) Increased expression of MAP kinase kinase7 causes deficiency in polar auxin transport and leads to plant architectural abnormality in Arabidopsis. Plant Cell 18:308-320PubMedCrossRefGoogle Scholar
  52. Dammann C, Ichida A, Hong B, Romanowsky SM, Hrabak EM, Harmon AC, Pickard BG, Harper JF (2003) Sub-cellular targeting of nine calcium-dependent protein kinase isoforms from Arabidopsis. Plant Physiol 132:1840-1848PubMedCrossRefGoogle Scholar
  53. D’Angelo C, Weinl S, Batistic O, Pandey GK, Cheong YH, Schultke S, Albrecht V, Ehlert B, Schulz B, Harter K, Luan S, Bock R, Kudla J (2006) Alternative complex formation of the Ca-regulated protein kinase CIPK1 controls abscisic acid-dependent and independent stress responses in Arabidopsis. Plant J 48:857-872PubMedCrossRefGoogle Scholar
  54. Darnell JE Jr (1997) STATs and gene regulation. Science 277:1630-1635PubMedCrossRefGoogle Scholar
  55. den Hertog J (1999) Protein-tyrosine phosphatases in development. Mech Dev 85:3-14CrossRefGoogle Scholar
  56. DeLong A. (2006) Switching the flip: protein phosphatase roles in signaling pathways. Curr Opin Plant Biol 9:470-7.CrossRefGoogle Scholar
  57. Denu JM, Stuckey JA, Saper MA, Dixon JE (1996) Form and function in protein dephosphorylation. Cell 87:361-64PubMedCrossRefGoogle Scholar
  58. Deruere J, Jackson K, Garbers C, Soll D, DeLong A (1999) The RCN1-encodedA subunit of protein phosphatase 2A increases phosphatase activity in vivo. Plant J 20:389-399PubMedCrossRefGoogle Scholar
  59. Desikan R, Hancock JT, Ichimura K, Shinozaki K, Neill SJ (2001) Harpin induces activation of the Arabidopsis mitogen-activated protein kinases AtMPK4 and AtMPK6. Plant Physiol 126:1579-1587PubMedCrossRefGoogle Scholar
  60. DeYoung BJ, Bickle KL, Schrage KJ, Muskett P, Patel K, Clark SE (2006) The CLAVATA1-related BAM1, BAM2 and BAM3 receptor kinase-like proteins are required for meristem function in Arabidopsis. Plant J 45:1-16PubMedCrossRefGoogle Scholar
  61. Dievart A, Clark SE (2004) LRR-containing receptors regulating plant development and defense. Development 131:251-261PubMedCrossRefGoogle Scholar
  62. Droillard M, Boudsocq M, Barbier-Brygoo H, Lauriere C (2002) Different protein kinase families are activated by osmotic stresses in Arabidopsis thaliana cell suspensions - involvement of the MAP kinases AtMPK3 and AtMPK6. FEBS Lett 527:43-50PubMedCrossRefGoogle Scholar
  63. Dunphy WG. (1994) The decision to enter mitosis. Trends Cell Biol. 4:202-7.PubMedCrossRefGoogle Scholar
  64. Endre G, Kereszt A, Kevei Z, Mihacea S, Kalo P, Kiss GB (2002) A receptor kinase gene regulating symbiotic nodule development. Nature 417:962-966PubMedCrossRefGoogle Scholar
  65. Epstein J, Eichbaum Q, Sheriff S, Ezekowitz RA (1996) The collectins in innate immunity. Curr Opin Immunol 8:29-35PubMedCrossRefGoogle Scholar
  66. Evans NH, McAinsh MR, Hetherington AM (2001) Calcium oscillations in higher plants. Curr Opin Plant Biol 4:415-420PubMedCrossRefGoogle Scholar
  67. Farmer PK, Choi JH (1999) Calcium and phospholipid activation of a recombinant calcium-dependent protein kinase (DcCPK1) from carrot (Daucus carota L.). Biochem Biophys Acta 1434:6-17PubMedCrossRefGoogle Scholar
  68. Feuillet C, Schachermayr G, Keller B (1997) Molecular cloning of a new receptor- like kinase gene encoded at the Lr10 disease resistance locus of wheat. Plant J 11:45-52PubMedCrossRefGoogle Scholar
  69. Fordham-Skelton AR, Skipsey M, Eveans IM, Edwards R, Gatehouse JA (1999) Higher plant tyrosine-specific protein phosphatases (PTPs) containnovel amino-terminal domains: expression during embryogenesis. Plant Mol Biol 39:593-605PubMedCrossRefGoogle Scholar
  70. Fordham-Skelton AP, Chilley P, Lumbreras V, Reignoux S, Fenton TR, Dahm C, Pages M, Gatehouse JA (2002) A novel higher plant protein tyrosine phosphatase interacts with SNF1-related protein kinases via a KIS (kinase interaction sequence) domain. Plant J 29:705-715PubMedCrossRefGoogle Scholar
  71. Fruman DA, Meyers RE, Cantley LC (1998) Phosphoinositide kinases. Annu Rev Biochem 67:481-507PubMedCrossRefGoogle Scholar
  72. Frye CA, Tang D, Innes RW (2001) From the cover: negative regulation of defense responses in plants by a conserved MAPKK kinase. Proc Natl Acad Sci USA 98:373-378PubMedCrossRefGoogle Scholar
  73. Fuglsang AT, Guo Y, Cuin TA, Qiu Q, Song C, Kristiansen KA, Bych K, Schulz A, Shabala S, Schumaker KS, Palmgren MG, Zhu JK (2007) Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+-ATPase by preventing interaction with 14-3-3 protein. Plant Cell 19:1617-1634PubMedCrossRefGoogle Scholar
  74. Furumoto T, Ogawa N, Hata S, Izui K (1996) Plant calcium-dependent protein kinase-related kinases (CRKs) do not require calcium for their activities. FEBS Lett 396:147-151PubMedCrossRefGoogle Scholar
  75. Garbers C, Delong A, Deruere J, Bernasconi P, Soll D (1996) A mutation in protein phosphatase 2A regulatory subunit A affects auxin transportin Arabidopsis. EMBO J 15:2115-2124PubMedGoogle Scholar
  76. Gargantini PR, Gonzalez-Rizzo S, Chinchilla D, Raices M, Giammaria V, Ulloa RM, Frugier F, Crespi MD (2006) A CDPK isoform participates in the regulation of nodule number in Medicago truncatula. Plant J 48:843-856PubMedCrossRefGoogle Scholar
  77. Giraudat J (1995) Abscisic acid signaling. Curr Opin Cell Biol 7:232-238PubMedCrossRefGoogle Scholar
  78. Gomez-Gomez L, Boller T (2000) FLS2, an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5:1003-1011PubMedCrossRefGoogle Scholar
  79. Gomez-Gomez L, Felix G, Boller T (1999) A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. Plant J 18:277-284PubMedCrossRefGoogle Scholar
  80. Gomez-Gomez L, Bauer Z, Boller T (2001) Both the extracellular leucine-rich repeat domain and the kinase activity of FLS2 are required for flagellin binding and signaling in Arabidopsis. Plant Cell 13:1155-1163PubMedGoogle Scholar
  81. Gomi K, Ogawa D, Katou S, Kamada H, Nakajima N, Saji H, Soyano T, Sasabe M, Machida Y, Mitsuhara I, Ohashi Y, Seo S (2005) A mitogen-activated protein kinase NtMPK4 activated by SIPKK is required for jasmonic acid signaling and involved in ozone tolerance via stomatal movement in tobacco. Plant Cell Physiol 46:1902-1914PubMedCrossRefGoogle Scholar
  82. Gong D, Guo Y, Jagendorf AT, Zhu JK (2002) Biochemical characterization of the Arabidopsis protein kinase SOS2 that functions in salt tolerance. Plant Physiol 130:256-264PubMedCrossRefGoogle Scholar
  83. Gonzalez-Garcia MP, Rodriguez D, Nicolas C, Rodriguez PL, Nicolas G, Lorenzo O (2003) Negative regulation of abscisic acid signaling by the Fagus sylvatica FsPP2C1 plays a role in seed dormancy regulation and promotion of seed germination. Plant Physiol 133:135-144PubMedCrossRefGoogle Scholar
  84. Gosti F, Beaudoin N, Serizet C, Webb AAR, Vartanian N, Giraudat J (1999) ABI1 protein phosphatase 2C is a negative regulator of abscisic acid signaling. Plant Cell 11:1897-1909PubMedGoogle Scholar
  85. Guenther JF, Chanmanivone N, Galetovic MP, Wallace IS, Cobb JA, Roberts DM (2003) Phosphorylation of soybean nodulin 26 on serine 262 enhances water permeability and is regulated developmentally and by osmotic signals. Plant Cell 15:981-991PubMedCrossRefGoogle Scholar
  86. Guillen G, Valdes-Lopez V, Noguez R (1999) Profilin in Phaseolus vulgaris isencoded by two genes (only one expressed in root nodules) but multiple isoformsare generated in vivo by phosphorylation on tyrosine residues. Plant J 19:497-508PubMedCrossRefGoogle Scholar
  87. Guo Y, Halfter U, Ishitani M, Zhu JK (2001) Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance. Plant Cell 13:1383-1400PubMedGoogle Scholar
  88. Guo Y, Xiong L, Song CP, Gong D, Halfter U, Zhu JK (2002) A calcium sensor and its interacting protein kinase are global regulators of abscisic acid signaling in Arabidopsis. Dev Cell 3:233-244PubMedCrossRefGoogle Scholar
  89. Guo Y, Qiu QS, Quintero FJ, Pardo JM, Ohta M, Zhang C, Schumaker KS, Zhu JK (2004) Transgenic evaluation of activated mutant alleles of SOS2 reveals a critical requirement for its kinase activity and C-terminal regulatory domain for salt tolerance in Arabidopsis thaliana. Plant Cell 16:435-449PubMedCrossRefGoogle Scholar
  90. Gupta R, Huang Y, Kieber J, Luan S (1998) Identification of a dual-specificity protein phosphatase that inactivates a MAP Kinase from Arabidopsis. Plant J 16:581-895PubMedCrossRefGoogle Scholar
  91. Gupta R, Ting T, Sokolov L, Johnson SJ, Luan S (2002) AtPTEN1, a tumor suppressor homologue essential for pollen development in Arabidopsis. Plant Cell 14:2495-2507PubMedCrossRefGoogle Scholar
  92. Halfter U, Ishitani M, Zhu JK (2000) The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proc Natl Acad Sci USA 97:3735-3740PubMedCrossRefGoogle Scholar
  93. Hamel LP, Nicole MC, Sritubtim S, Morency MJ, Ellis M, Ehlting J, Beaudoin N, Barbazuk B, Klessig D, Lee J, Martin G, Mundy J, Ohashi Y, Scheel D, Sheen J, Xing T, Zhang S, Seguin A, Ellis BE (2006) Ancient signals: comparative genomics of plant MAPK and MAPKK gene families. Trends Plant Sci 11:192-198PubMedCrossRefGoogle Scholar
  94. Handford ZRP, Mayhew M, Knott V, Brownlee GG, Stuart D (1995) The structure of a Ca2+-binding epidermal growth factor-like domain: its role in protein-protein interaction. Cell 82:131-141PubMedCrossRefGoogle Scholar
  95. Hanks SK, Hunter T (1995) Protein kinases 6- The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J 9:576-596PubMedGoogle Scholar
  96. Hanks SK, Quinn AM, Hunter T (1998) The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241:42-52CrossRefGoogle Scholar
  97. Hardin SC, Tang GQ, Scholz A, Holtgraewe D, Winter H, Huber SC (2003) Phosphorylation of sucrose synthase at serine 170: occurrence and possible role as a signal for proteolysis. Plant J 35:588-603PubMedCrossRefGoogle Scholar
  98. Harmon AC, Yoo BC, McCaffery C (1994) Pseudosubstrate inhibition of CDPK, a protein kinase with a calmodulin-like domain. Biochemistry 33:7278-7287PubMedCrossRefGoogle Scholar
  99. Harper JF, Harmon A (2005) Plants, symbiosis and parasites: a calcium signalling connection. Nat Rev Mol Cell Biol 6:555-566PubMedCrossRefGoogle Scholar
  100. Harper JF, Breton G, Harmon A (2004) Decoding Ca2+ signals through plant protein kinases. Annu Rev Plant Biol 55:263-288PubMedCrossRefGoogle Scholar
  101. Haubrick LL, Assmann SM (2006) Brassinosteroids and plant function: some clues, more puzzles. Plant Cell Environ 29:446-457PubMedCrossRefGoogle Scholar
  102. Hawgood S, Poulain F (2001) The pulmonary collectins and surfactant metabolism. Annu Rev Physiol 63:495-519PubMedCrossRefGoogle Scholar
  103. He C, Fong SH, Yang D, Wang GL (1999a) BWMK1, a novel MAP kinase induced by fungal infection and mechanical wounding in rice. Mol Plant Microbe Interact 12:1064-1073PubMedCrossRefGoogle Scholar
  104. He JX, Gendron JM, Yang Y, Li J, Wang ZY (2002) The GSK3-like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signaling pathway in Arabidopsis. Proc Natl Acad Sci USA 99:10185-10190PubMedCrossRefGoogle Scholar
  105. He Z, Wang ZY, Li J, Zhu Q, Lamb C, Ronald P, Chory J (2000) Perception of brassinosteroids by the extracellular domain of the receptor kinase BRI1. Science 288:2360-2363PubMedCrossRefGoogle Scholar
  106. He ZH, Fujiki M, Kohorn BD (1996) A cell wall associated receptor-like protein kinase. J Biol Chem 271:19789-19793PubMedCrossRefGoogle Scholar
  107. He ZH, He D, Kohorn BD (1998) Requirement for the induced expression of a cell wall associated receptor kinase for survival during the pathogen response. Plant J 14:55-63PubMedCrossRefGoogle Scholar
  108. He ZH, Cheeseman I, He D, Kohorn BD (1999b) A cluster of five cell wall associated receptor kinase genes, Wak1-5, are expressed in specific organs of Arabidopsis. Plant Mol Biol 39:1189-1196PubMedCrossRefGoogle Scholar
  109. Hecht V, Vielle-Calzada JP, Hartog MV, Schmidt ED, Boutilier K, Grossniklaus U, de Vries SC (2001) The Arabidopsis somatic embryogenesis receptor kinase 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol 127:803-816PubMedCrossRefGoogle Scholar
  110. Hernandez Sebastia C, Hardin SC, Clouse SD, Kieber JJ, Huber SC (2004) Identification of a new motif for CDPK phosphorylation in vitro that suggests ACC synthase may be a CDPK substrate. Arch Biochem Biophys 428:81-91PubMedCrossRefGoogle Scholar
  111. Herskowitz I (1995) MAP Kinase pathways in yeast: for mating and more. Cell 80:187-197PubMedCrossRefGoogle Scholar
  112. Herve C, Dabos P, Galaud JP, Rouge P, Lescure B (1996) Characterization of an Arabidopsis thaliana gene that defines a new class of putative plant receptor kinases with an extracellular lectin-like domain. J Mol Biol 258:778-788PubMedCrossRefGoogle Scholar
  113. Hester G, Kaku HG, Goldstein IJ, Wright CS (1995) Structure of mannose-specific snowdrop (Galanthus nivalis) lectin in representative of a new plant lectin family. Nat Struct Biol 2:472-479PubMedCrossRefGoogle Scholar
  114. Himmelbach A, Hoffmann T, Leube M, Höhener B, Grill E (2002) Homeodomain protein ATHB6 is a target of the protein phosphatase ABI1 and regulates hormone responses in Arabidopsis. EMBO J 21:3029-3038PubMedCrossRefGoogle Scholar
  115. Hou X, Tong H, Selby J, Dewitt J, Peng X, He ZH (2005) Involvement of a cell wall-associated kinase, WAKL4, in Arabidopsis mineral responses. Plant Physiol 139:1704-1716PubMedCrossRefGoogle Scholar
  116. Hrabak EM, Chan CW, Gribskov M, Harper JF, Choi JH, Halford N, Kudla J, Luan S, Nimmo HG, Sussman MR, Thomas M, Walker-Simmons K, Zhu JK, Harmon AC (2003) The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol 132:666-680PubMedCrossRefGoogle Scholar
  117. Hua W, Liang S, Lu YT (2003) A tobacco (Nicotiana tobaccum) calmodulin-binding protein kinase, NtCBK2, is regulated differentially by calmodulin isoforms. Biochem J 376:291-302PubMedCrossRefGoogle Scholar
  118. Huang Y, Li H, Gupta R, Morris PC, Luan S, Kieber JJ (2000) ATMPK4, an Arabidopsis homolog of mitogen activated protein kinase, is activated in vitro by AtMEK1 through threonine phosphorylation. Plant Physiol 122:1301-1310PubMedCrossRefGoogle Scholar
  119. Hunter T (2000) Signaling: 2000 and beyond. Cell 100:113-127PubMedCrossRefGoogle Scholar
  120. Huse M, Kuriyan J (2002) The conformational plasticity of protein kinases. Cell 109:275-282PubMedCrossRefGoogle Scholar
  121. Hwang YS, Bethke PC, Cheong YHS, Zhu T, Jones RL (2005) A gibberellin-regulated calcineurin B in rice localizes to the tonoplast and is implicated in vacuole function. Plant Physiol 138:1347-1358PubMedCrossRefGoogle Scholar
  122. Ichimura K, Mizoguchi T, Irie K, Morris P, Giraudat J, Matsumoto K, Shinozaki K (1998) Isolation of AtMEKK1 (a MAP kinase kinase kinase) - interacting proteins and analysis of a MAP Kinase cascade in Arabidopsis. Biochem Biophys Res Commun 253:532-543PubMedCrossRefGoogle Scholar
  123. Ichimura K, Mizoguchi T, Yoshida R, Yuasa T, Shinozaki K (2000) Various abiotic stresses rapidly activate Arabidopsis MAP Kinases AtMPK4 and AtMPK6. Plant J 24:655-665PubMedCrossRefGoogle Scholar
  124. Ichimura K, Casais C, Peck SC, Shinozaki K, Shirasu K (2006) MEKK1 is required for MPK4 activation and regulates tissue-specific and temperature-dependent cell death in Arabidopsis. J Biol Chem 281:36969-36976PubMedCrossRefGoogle Scholar
  125. Iten M, Hoffmann TM, Grill E (1999) Receptors and signaling components of plant hormones. J Recept Signal Transduct Res 19:41-58PubMedCrossRefGoogle Scholar
  126. Jeong HJ, Jwa NS, Kim KN (2005) Identification and characterization of protein kinase that interact with the CBL3 calcium sensor in Arabidopsis. Plant Sci 169:1125-1135CrossRefGoogle Scholar
  127. Jin H, Axtell MJ, Dahlbeck D, Ekwenna O, Zhang S, Staskawicz B, Baker B (2002) NPK1, an MEKK1-like mitogen-activated protein kinase kinase kinase, regulates innate immunity and development in plants. Dev Cell 3:291-297PubMedCrossRefGoogle Scholar
  128. Jin H, Liu Y, Yang KY, Kim CY, Baker B, Zhang S (2003) Function of a mitogen-activated protein kinase pathway in N gene-mediated resistance in tobacco. Plant J 33:719-731PubMedCrossRefGoogle Scholar
  129. Jinn TS, Stone JM, Walker JC (2000) HAESA, an Arabidopsis leucine-rich repeat receptor kinase, controls floral organ abscission. Genes Dev 14:108-117PubMedGoogle Scholar
  130. Johnson KL, Ingram GC (2005) Sending the right signals: regulating receptor kinase activity. Curr Opin Plant Biol 8:648-656PubMedCrossRefGoogle Scholar
  131. Johnson LN, Noble MEM, Owen DJ (1996) Active and inactive protein kinases: structural basis for regulation. Cell 85:149-158PubMedCrossRefGoogle Scholar
  132. Jonak C, Heberle-Bors E, Hirt H (1994) MAP kinases: universal multi-purpose signaling tools. Plant Mol Biol 24:407-416PubMedCrossRefGoogle Scholar
  133. Jonak C, Kiegerl S, Ligterink W, Barker PJ, Huskisson NS, Hirt H (1996) Stress signaling in plants: a mitogen-activated protein kinase pathway is activated by cold and drought. Proc Natl Acad Sci USA 93:11274-11279PubMedCrossRefGoogle Scholar
  134. Jonak C, Okresz L, Bogre L, Hirt H (2002) Complexity, cross talk and integration of plant MAP kinase signaling. Curr Opin Plant Biol 5:415-424PubMedCrossRefGoogle Scholar
  135. Kajava AV, Kobe B (2002) Assessment of the ability to model proteins with leucine-rich repeats in light of the latest structural information. Protein Sci 11:1082-1090PubMedCrossRefGoogle Scholar
  136. Kameyama K, Kishi Y, Yoshimura M, Kanzawa N, Sameshima M, Tsuchiya T (2000) Tyrosine phosphorylation and plant bending. Nature 407:437Google Scholar
  137. Katou S, Yoshioka H, Kawakita K, Rowland O, Jones JDG, Mori H, Doke N (2005) Involvement of PPS3 phosphorylated by elicitor-responsive mitogen-activated protein kinases in the regulation of plant cell death. Plant Physiol 139:1914-1926PubMedCrossRefGoogle Scholar
  138. Kerk D, Bulgrein J, Smith DW, Barsam B, Veretnik S et al (2002) The complement of protein phosphatase catalytic subunits encoded in the genome of Arabidopsis. Plant Physiol 129:908-925PubMedCrossRefGoogle Scholar
  139. Kerk D, Conley TR, Rodriguez FA, Tran HT, Nimick M, Muench DG, Moorhead GB (2006) A chloroplast-localized dual-specificity protein phosphatase in Arabidopsis contains a phylogenetically dispersed and ancient carbohydrate-binding domain, which binds the polysaccharide starch. Plant J 46:400-413PubMedCrossRefGoogle Scholar
  140. Keyse SM (1995) An emerging family of dual specificity MAP kinase phosphatases. Biochim Biophys Acta 1265:2-3CrossRefGoogle Scholar
  141. Keyse SM (1998) Protein phosphatases and the regulation of MAP kinase activity semin. Cell Dev Biol 9:143-152CrossRefGoogle Scholar
  142. Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR (1993) CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinase. Cell 72:427-441PubMedCrossRefGoogle Scholar
  143. Kiegerl S, Cardinale F, Siligan C, Gross A, Baudouin E, Liwosz A, Eklof S, Till S, Bogre L, Hirt H, Meskiene I (2000) SIMKK, a mitogen-activated protein kinase (MAPK) kinase, is a specific activator of the salt stress-induced MAPK, SIMK. Plant Cell 12:2247-2258PubMedGoogle Scholar
  144. Kim CY, Zhang S (2004) Activation of a mitogen-activated protein kinase cascade induces WRKY family of transcription factors and defense genes in tobacco. Plant J 38:142-151PubMedCrossRefGoogle Scholar
  145. Kim CY, Liu Y, Thorne ET, Yang H, Fukushige H, Gassmann W, Hildebrand D, Sharp RE, Zhang S (2003a) Activation of a stress-responsive mitogen-activated protein kinase cascade induces the biosynthesis of ethylene in plants. Plant Cell 15:2707-2718PubMedCrossRefGoogle Scholar
  146. Kim KN, Cheong YH, Gupta R, Luan S (2000a) Interaction specificity of Arabidopsis calcineurin B-like calcium sensors and their target kinases. Plant Physiol 124:1844-1853PubMedCrossRefGoogle Scholar
  147. Kim KN, Cheong YH, Grant JJ, Pandey GK, Luan S (2003b) CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis. Plant Cell 15:411-423PubMedCrossRefGoogle Scholar
  148. Kim YS, Lee JH, Yoon GM, Cho HS, Park SW, Suh MC, Choi D, Ha HJ, Liu JR, Pai HS (2000b) CHRK1, a chitinase-related receptor-like kinase in tobacco. Plant Physiol 123:905-915PubMedCrossRefGoogle Scholar
  149. Kobayashi M, Ohura I, Kawakita K, Yokota N, Fujiwara M, Shimamoto K, Doke N, Yoshioka H (2007) Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase. Plant Cell 19:1065-1080PubMedCrossRefGoogle Scholar
  150. Kobe B, Deisenhofer J (1995) A structural basis of the interactions between leucine-rich repeats and protein ligands. Nature 374:183-186PubMedCrossRefGoogle Scholar
  151. Kobe B, Kajava AV (2001) The leucine-rich repeat as a protein recognition motif. Curr Opin Struct Biol 11:725-732PubMedCrossRefGoogle Scholar
  152. Kohorn BD, Kobayashi M, Johansen S, Riese J, Huang LF, Koch K, Fu S, Dotson A, Byers N (2006) An Arabidopsis cell wall-associated kinase required for invertase activity and cell growth. Plant J 46:307-316PubMedCrossRefGoogle Scholar
  153. Kolukisaoglu U, Weinl S, Blazevic D, Batistic O, Kudla J (2004) Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks. Plant Physiol 134:43-58PubMedCrossRefGoogle Scholar
  154. Kovtun Y, Chiu W, Zeng W, Sheen J (1998) Suppression of auxin signal transduction by a MAPK cascade in higher plants. Nature 395:716-720PubMedCrossRefGoogle Scholar
  155. Kovtun Y, Chiu W, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci USA 97:2940-2945PubMedCrossRefGoogle Scholar
  156. Krusell L, Madsen LH, Sato S, Aubert G, Genua A, Szczyglowski K, Duc G, Kaneko T, Tabata S, de Bruijn F, Pajuelo E, Sandal N, Stougaard J (2002) Shoot control of root development and nodulation is mediated by a receptor-like kinase. Nature 420:422-426PubMedCrossRefGoogle Scholar
  157. Krysan PJ, Jester PJ, Gottwald JR, Sussman MR (2002) An Arabidopsis mitogen-activated protein kinase kinase kinase gene family encodes essential positive regulators of cytokinesis. Plant Cell 14:1109-1120PubMedCrossRefGoogle Scholar
  158. Kudla J, Xu Q, Harter K, Gruissem W, Luan S (1999) Genes for calcineurin B-like proteins in Arabidopsis are differentially regulated by stress signals. Proc Natl Acad Sci USA 96:4718-4723PubMedCrossRefGoogle Scholar
  159. Kuhn JM, Boisson-Dernier A, Dizon MB, Maktabi MH, Schroeder JI (2006) The protein phosphatase AtPP2CA negatively regulates abscisic acid signal transduction in Arabidopsis, and effects of abh1 on AtPP2CAmRNA. Plant Physiol 140:127-139PubMedCrossRefGoogle Scholar
  160. Kumar D, Klessig DF (2000) Differential induction of tobacco MAP kinases by the defense signals nitric oxide, salicylic acid, ethylene and jasmonic acid. Mol Plant Microbe Interact 13:347-351PubMedCrossRefGoogle Scholar
  161. Kwak SH, Shen R, Schiefelbein J (2005) Positional signaling mediated by a receptor-like kinase in Arabidopsis. Science 307:1111-1113PubMedCrossRefGoogle Scholar
  162. Latorre KA, Harris DM, Rundle SJ (1997) Differential expression of three Arabidopsis genes encoding the B regulatory subunit of protein phosphatase 2A. Eur J Biochem 245:156-163PubMedCrossRefGoogle Scholar
  163. Leclercq J, Ranty B, Sanchez-Ballesta MT, Li Z, Jones B, Jauneau A, Pech JC, Latched A, Ranjeva R, Bouzayen M (2005) Molecular and biochemical characterization of LeCRK1, a ripening-associated tomato CDPK-related kinase. J Exp Bot 56:25-35PubMedGoogle Scholar
  164. Lee J, Klessig DF, Nürnberger T (2001) A hairpin binding site in tobacco plasma membranes mediates activation of the pathogenesis-related gene HIN1 independent of extracellular calcium but dependent on mitogen-activated protein kinase activity. Plant Cell 13:1079-1093PubMedGoogle Scholar
  165. Lee JY, Yoo BC, Harmon AC (1998) Kinetic and calcium-binding properties of three calcium-dependent protein kinase isoenzymes from soybean. Biochemistry 37:6801-6809PubMedCrossRefGoogle Scholar
  166. Lee SS, Cho HS, Yoon GM, Ahn JW, Kim HH, Pai HS (2003) Interaction of NtCDPK1 calcium-dependent protein kinase with NtRpn3 regulatory subunit of the 26S proteasome in Nicotiana tobaccum. Plant J 33:825-840PubMedCrossRefGoogle Scholar
  167. Lee SW, Han SW, Bartley LE, Ronald PC (2006) Unique characteristics of Xanthomonas oryzae pv. oryzae AvrXa21 and implications for plant innate immunity. Proc Natl Acad Sci USA 103:18395-18400PubMedCrossRefGoogle Scholar
  168. Leonhardt N, Kwak JM, Robert N, Waner D, Leonhardt G, Schroeder JI (2004) Microarray expression analyses of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase2C mutant. Plant Cell 16:596-615PubMedCrossRefGoogle Scholar
  169. Lewis TS, Shapiro PS, Ahn NG (1998) Signal transduction through MAP kinase cascades. Adv Cancer Res 74:49-139PubMedCrossRefGoogle Scholar
  170. Li J, Chory J (1997) A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90:929-938PubMedCrossRefGoogle Scholar
  171. Li J, Wen J, Lease KA, Doke JT, Tax FE, Walker JC (2002) BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 110:213-222PubMedCrossRefGoogle Scholar
  172. Li L, Kim BG, Cheong YH, Pandey GK, Luan S (2006) A Ca2+ signaling pathway regulates a K+ channel for low-K response in Arabidopsis. Proc Natl Acad Sci USA 103:12625-12630PubMedCrossRefGoogle Scholar
  173. Lin Q, Li J, Smith RD, Walker JC (1998) Molecular cloning and chromosomal mapping of type one serine/threonine protein phosphatases in Arabidopsis thaliana. Plant Mol Biol 37:471-481PubMedCrossRefGoogle Scholar
  174. Lindzen E, Choi JH (1995) A carrot cDNA encoding an atypical protein kinase homologous to plant calcium-dependent protein kinases. Plant Mol Biol 28:785-797PubMedCrossRefGoogle Scholar
  175. Liu J, Zhu JK (1998) A calcium sensor homolog required for plant salt tolerance. Science 280:1943-1945PubMedCrossRefGoogle Scholar
  176. Liu J, Ishitani M, Halfter U, Kim CS, Zhu JK (2000a) The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc Natl Acad Sci USA 97:3730-3734PubMedCrossRefGoogle Scholar
  177. Liu Y, Zhang S (2004) Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. Plant Cell 16:3386-3399PubMedCrossRefGoogle Scholar
  178. Liu Y, Jin H, Yang KY, Kim CY, Baker B, Zhang S (2003) Interaction between two mitogen-activated protein kinases during tobacco defense signaling. Plant J 34:149-160PubMedCrossRefGoogle Scholar
  179. Liu Y, Zhang S, Klessig DF (2000b) Molecular cloning and characterization of a tobacco MAP kinase kinase that interacts with SIPK. Mol Plant Microbe Interact 13:118-124PubMedCrossRefGoogle Scholar
  180. Liu Z, Xia M, Poovaiah BW (1998) Chimeric calcium/calmodulin-dependent protein kinase in tobacco: differential regulation by calmodulin isoforms. Plant Mol Biol 38:889-897PubMedCrossRefGoogle Scholar
  181. Loris R, Hamelryck T, Bouckaert J, Wyns L (1998) Legume lectin structure. Biochim Biophys Acta 1383:9-36PubMedCrossRefGoogle Scholar
  182. Lu C, Han MH, Guevara-Garcia A, Fedoroff NV (2002) Mitogen-activated protein kinase signaling in post-germination arrest of development by abscisic acid. Proc Natl Acad Sci USA 99:15812-15817PubMedCrossRefGoogle Scholar
  183. Lu SX, Hrabak EM (2002) An Arabidopsis calcium-dependent protein kinase is associated with the endoplasmic reticulum. Plant Physiol 128:1008-1021PubMedCrossRefGoogle Scholar
  184. Luan S (2000) Protein phosphatases: structure, regulation and function. Adv Bot Res 32:67-107CrossRefGoogle Scholar
  185. Luan S (2003) Protein phosphatases in plants. Annu Rev Plant Biol. 54:63-92CrossRefGoogle Scholar
  186. Luan S, Li W, Rusnak F, Assmann SM, Schreiber SL (1993) Immuno-suppressants implicate protein phosphatase regulation of potassium channels in guard cells. Proc Natl Acad Sci USA 90:2202-2206PubMedCrossRefGoogle Scholar
  187. Luan S, Kudla J, Rodriguez-Concepcion M, Yalovsky S, Gruissem W (2002) Calmodulins and calcineurin B-like proteins: calcium sensors for specific signal response coupling in plants. Plant Cell 14(Suppl):S389-S400Google Scholar
  188. Ludwig AA, Romeis T, Jones JD (2004) CDPK-mediated signalling pathways: specificity and cross-talk. J Exp Bot 55:181-188PubMedCrossRefGoogle Scholar
  189. Lukowitz W, Roeder A, Parmenter D, Somerville C (2004) A MAPKK kinase gene regulates extra-embryonic cell fate in Arabidopsis. Cell 116:109-119PubMedCrossRefGoogle Scholar
  190. Mackintosh RW, Haycox G, Hardie DG, Cohen PTW (1990) Identificationby molecular cloning of two complementary DNA sequences from the plant Brassica napus which are very similar to mammalian protein phosphatase-1and protein phosphatase-2a. FEBS Lett 276:1-2CrossRefGoogle Scholar
  191. MacRobbie EAC (2002) Evidence for a role for protein tyrosine phosphatase in the control of ion release from the guard cell vacuole in stomatal closure. Proc Natl Acad Sci USA 99:11963-11968PubMedCrossRefGoogle Scholar
  192. Madsen EB, Madsen LH, Radutoiu S, Olbryt M, Rakwalska M, Szczyglowski K, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J (2003) A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature 425:637-640PubMedCrossRefGoogle Scholar
  193. Maehama T, Taylor GS, Dixon JE (2001) PTEN and myotubularin: novel phosphoinositide phosphatases. Annu Rev Biochem 70:247-279PubMedCrossRefGoogle Scholar
  194. Mansour SJ, Matten WT, Hermann AS, Candia JM, Rong S, Fukasawa K, Vande Woude GF, Ahn NG (1994) Transformation of mammalian cells by constitutively active MAP kinase kinase. Science 265:966-970PubMedCrossRefGoogle Scholar
  195. MAPK Group (2002) Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci 7:301-308CrossRefGoogle Scholar
  196. Martin GB, Brommonschenkel S, Chunwongse J, Frary A, Ganal MW, Spivey R, Wu T, Earle ED, Tanksley SD (1993) Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262:1432-1436PubMedCrossRefGoogle Scholar
  197. Martin ML, Busconi L (2000) Membrane localization of rice calcium-dependent protein kinase (CDPK) is mediated by myristoylation and palmitoylation. Plant J 24:429-435PubMedCrossRefGoogle Scholar
  198. Matsubayashi Y, Ogawa M, Morita A, Sakagami Y (2002) An LRR receptor kinase involved in perception of a peptide plant hormone, phytosulfokine. Science 296:1470-1472PubMedCrossRefGoogle Scholar
  199. Matsuoka D, Nanmori T, Sato K, Fukami Y, Kikkawa U, Yasuda T (2002) Activation of AtMEK1, an Arabidopsis mitogen-activated protein kinase kinase, in vitro and in vivo: analysis of active mutants expressed in E. coli and generation of the active form in stress response in seedlings. Plant J 29:637-647PubMedCrossRefGoogle Scholar
  200. Menke FL, van Pelt JA, Pieterse CM, Klessig DF (2004) Silencing of the mitogen-activated protein kinase MPK6 compromises disease resistance in Arabidopsis. Plant Cell 16:897-907PubMedCrossRefGoogle Scholar
  201. Menke FLH, Kang H, Chen Z, Park JM, Kumar D, Klessig DF (2005) Tobacco transcription factor WRKY1 is phosphorylated by the MAP kinase SIPK and mediates HR-like cell death in tobacco. Mol Plant Microbe Interact 18:1027-1034PubMedCrossRefGoogle Scholar
  202. Merlot S, Gosti F, Guerrier D, Vavasseur A, Giraudat J (2001) The ABI1and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signaling pathway. Plant J 25:295-303PubMedCrossRefGoogle Scholar
  203. Meskiene I, Bögre L, Glaser W, Balog J, Brandstötter M, Zwerger K, Ammerer G, Hirt H (1998a) MP2C, a plant protein phosphatase 2C, functions as a negative regulator of mitogen-activated protein kinase pathways in yeast and plants. Proc Natl Acad Sci USA 95:1938-1943PubMedCrossRefGoogle Scholar
  204. Meskiene I, LigterinkW BL, Jonak C, Kiegerl S, Balog J, Eklöf S, Ammerer G, Hirt H (1998b) The SAM kinase pathway: an integrated circuit for stress signaling in plants. J Plant Res 111:339-344CrossRefGoogle Scholar
  205. Meskiene I, Baudouin E, Schweighofer A, Liwosz A, Jonak C, Rodriguez PL, Jelinek H, Hirt H (2003) The stress-induced protein phosphatase 2C is a negative regulator of a mitogen-activated protein kinase. J Biol Chem 278:18945-18952PubMedCrossRefGoogle Scholar
  206. Meszaros T, Helfer A, Hatzimasoura E, Magyar Z, Serazetdinova L, Rios G, Bardoczy V, Teige M, Koncz C, Peck S, Bogre L (2006) The Arabidopsis MAP kinase kinase MKK1 participates in defence responses to the bacterial elicitor flagellin. Plant J 48:485-498PubMedCrossRefGoogle Scholar
  207. Mikolajczyk M, Awotunde OS, Muszynska G, Klessig DF, Dobrowolska G (2000) Osmotic stress induces rapid activation of a salicylic acid-induced protein kinase and a homolog of protein kinase ASK1 in tobacco cells. Plant Cell 12:165-78PubMedGoogle Scholar
  208. Miles GP, Samuel MA, Zhang Y, Ellis BE (2005) RNA interference-based (RNAi) suppression of AtMPK6, an Arabidopsis mitogen-activated protein kinase, results in hypersensitivity to ozone and misregulation of AtMPK3. Environ Pollut 138:230-237PubMedCrossRefGoogle Scholar
  209. Mishra NS, Tuteja R, Tuteja N (2006) Signaling through MAP kinase networks in plants. Arch Biochem Biophys 452:55-68PubMedCrossRefGoogle Scholar
  210. Mizoguchi T, Irie K, Hirayama T, Hayashida N, Yamaguchi-Shinozaki K, Matsumoto K, Shinozaki K (1996) A gene encoding a mitogen-activated protein kinase kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch, cold and water stress in Arabidopsis thaliana. Proc Natl Acad Sci USA 93:765-769PubMedCrossRefGoogle Scholar
  211. Mizoguchi T, Ichimura K, Shinozaki K (1997) Environmental stress response in plants: the role of mitogen-activated protein kinases. Trends Biotechnol 15:15-19PubMedCrossRefGoogle Scholar
  212. Mizoguchi T, Ichimura K, Irie K, Morris P, Giraudat J, Matsumoto K, Shinozaki K (1998) Identification of a possible MAP kinase cascade in Arabidopsis thaliana based on pairwise yeast two-hybrid analysis and functional complementation tests of yeast mutants. FEBS Lett 437:56-60PubMedCrossRefGoogle Scholar
  213. Mockaitis K, Howell SH (2000) Auxin induces mitogenic activated protein kinase (MAPK) activation in roots of Arabidopsis seedlings. Plant J 24:785-796PubMedCrossRefGoogle Scholar
  214. Montoya T, Nomura T, Farrar K, Kaneta T, Yokota T, Bishop GJ (2002) Cloning the tomato Curl3 gene highlights the putative dual role of the leucine-rich repeat receptor kinase tBRI1/SR160 in plant steroid hormone and peptide hormone signaling. Plant Cell 14:3163-3176PubMedCrossRefGoogle Scholar
  215. Morillo SA, Tax FE (2006) Functional analysis of receptor-like kinases in monocots and dicots. Curr Opin Plant Biol 9:460-469PubMedCrossRefGoogle Scholar
  216. Morris ER, Walker JC (2003) Receptor-like protein kinase: the keys to response. Curr Opin Plant Biol 6:339-342PubMedCrossRefGoogle Scholar
  217. Morris PC (2001) MAP kinase signal transduction pathways in plants. New Phytol 151:67-89CrossRefGoogle Scholar
  218. Munnik T, Meijer HJ (2001) Osmotic stress activates distinct lipid and MAPK signalling pathways in plants. FEBS Lett 498:172-178PubMedCrossRefGoogle Scholar
  219. Munnik T, Ligterink W, Meskiene II, Calderini O, Beyerly J, Musgrave A, Hirt H (1999) Distinct osmo-sensing protein kinase pathways are involved in signalling moderate and severe hyper-osmotic stress. Plant J 20:381-388PubMedCrossRefGoogle Scholar
  220. Murata Y, Pei ZM, Mori IC, Schroeder J (2001) Abscisic acid activation of plasma membrane Ca2þ channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1-1 and abi2-1 protein phosphatase 2C mutants. Plant Cell 13:2513-2523PubMedGoogle Scholar
  221. Nagae M, Nozawa A, Koizumi N, Sano H, Hashimoto H, Sato M, Shimizu T (2003) The crystal structure of the novel calcium-binding protein AtCBL2 from Arabidopsis thaliana. J Biol Chem 278:42240-42246PubMedCrossRefGoogle Scholar
  222. Naismith JH, Sprang SR (1998) Modularity in the TNF-receptor family. Trends Biochem Sci 23:74-79PubMedCrossRefGoogle Scholar
  223. Nakagami H, Kiegerl S, Hirt H (2004) OMTK1, a novel MAPKKK, channels oxidative stress signaling through direct MAPK interaction. J Biol Chem 279:26959-26966PubMedCrossRefGoogle Scholar
  224. Nakagami H, Pitzschke A, Hirt H (2005) Emerging MAP kinase pathways in plant stress signaling. Trends Plant Sci 7:339-346CrossRefGoogle Scholar
  225. Nakagami H, Soukupova H, Schikora A, Zarsky V, Hirt H (2006) A mitogen-activated protein kinase kinase kinase mediates reactive oxygen species homeostasis in Arabidopsis. J Biol Chem 281:38697-38704PubMedCrossRefGoogle Scholar
  226. Nakamura A, Fujioka S, Sunohara H, Kamiya N, Hong Z, Inukai Y, Miura K, Takatsuto S, Yoshida S, Ueguchi-Tanaka M, Hasegawa Y, Kitano H, Matsuoka M (2006) The role of OsBRI1 and its homologous genes, OsBRL1 and OsBRL3, in rice. Plant Physiol 140:580-590PubMedCrossRefGoogle Scholar
  227. Nam KH, Li J (2002) BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell 110:203-212PubMedCrossRefGoogle Scholar
  228. Narvaez-Vasquez J, Ryan CA (2002) The systemin precursor gene regulates both defensive and developmental genes in Solanum tuberosum. Proc Natl Acad Sci USA 99:15818-15821PubMedCrossRefGoogle Scholar
  229. Nirmala J, Brueggeman R, Maier C, Clay C, Rostoks N, Kannangara CG, von Wettstein D, Steffenson BJ, Kleinhofs A (2006) Sub-cellular localization and functions of the barley stem rust resistance receptor-like serine/threonine-specific protein kinase Rpg1. Proc Natl Acad Sci USA 103:7518-7523PubMedCrossRefGoogle Scholar
  230. Nishihama R, Ishikawa M, Araki S, Soyano T, Asada T, Machida Y (2001) The NPK1 mitogen-activated protein kinase kinase kinase is a regulator of cell-plate formation in plant cytokinesis. Genes Dev 15:352-363PubMedCrossRefGoogle Scholar
  231. Nishihama R, Soyano T, Ishikawa M, Araki S, Tanaka H, Asada T, Irie K, Ito M, Terada M, Banno H, Yamazaki Y, Machida Y (2002) Expansion of the cell plate in plant cytokinesis requires a kinesin-like protein/MAPKKK complex. Cell 109:87-99PubMedCrossRefGoogle Scholar
  232. Nishimura R, Hayashi M, Wu GJ, Kouchi H, Imaizumi-Anraku H, Murakami Y, Kawasaki S, Akao S, Ohmori M, Nagasawa M, Harada K, Kawaguchi M (2002) HAR1 mediates systemic regulation of symbiotic organ development. Nature 420:426-429PubMedCrossRefGoogle Scholar
  233. Nomura T, Bishop GJ, Kaneta T, Reid JB, Chory J, Yokota T (2003) The LKA gene is a brassinosteroid insensitive 1 homolog of pea. Plant J 36:291-300PubMedCrossRefGoogle Scholar
  234. Novikova GV, Moshkov IE, Smith AR, Hall MA (2000) The effect of ethylene on MAPKinase-like activity in Arabidopsis thaliana. FEBS Lett 474:29-32PubMedCrossRefGoogle Scholar
  235. Nuhse TS, Peck SC, Hirt H, Boller T (2000) Microbial elicitors induce activation and dual phosphorylation of the Arabidopsis thaliana MAPK 6. J Biol Chem 275:7521-7526PubMedCrossRefGoogle Scholar
  236. Nürnberger T, Kemmerling B (2006) Receptor protein kinases-pattern recognition receptors in plant immunity. Trends Plant Sci 11:519-522PubMedCrossRefGoogle Scholar
  237. Oh MH, Ray WK, Huber SC, Asara JM, Gage DA, Clouse SD (2000) Recombinant brassinosteroid insensitive 1 receptor-like kinase autophosphorylates on serine and threonine residues and phosphorylates a conserved peptide motif in vitro. Plant Physiol 124:751-766PubMedCrossRefGoogle Scholar
  238. Ok SH, Jeong HJ, Bae JM, Shin JS, Luan S, Kim KN (2005) Novel CIPK1-associated proteins in Arabidopsis contain an evolutionarily conserved C-terminal region that mediates nuclear localization. Plant Physiol 139:138-150PubMedCrossRefGoogle Scholar
  239. Osakabe Y, Maruyama K, Seki M, Satou M, Shinozaki K, Yamaguchi-Shinozaki K (2005) Leucine-rich repeat receptor-like kinase 1 is a key membrane-bound regulator of abscisic acid early signaling in Arabidopsis. Plant Cell 17:1105-1119PubMedCrossRefGoogle Scholar
  240. Ouaked F, Rozhon W, Lecourieux D, Hirt H (2003) A MAPK pathway mediates ethylene signaling in plants. EMBO J 22:1282-1288PubMedCrossRefGoogle Scholar
  241. Overmyer K, Tuominen H, Kettunen R, Betz C, Langebartels C, Sandermann H Jr, Kangasjärvi J. (2000) Ozone- sensitive arabidopsis rcd1 mutant reveals opposite roles for ethylene and jasmonate signaling pathways in regulating superoxide-dependent cell death. Plant Cell.22:1849–1862PubMedCrossRefGoogle Scholar
  242. Overmyer K, Brosche M, Pellinen R, Kuittinen T, Tuominen H, Ahlfors R, Keinanen M, Saarma M, Scheel D, ­Kangasjarvi J (2005) Ozone-induced programmed cell death in the Arabidopsis radical-induced cell death1 mutant. Plant Physiol 137:1092-1104PubMedCrossRefGoogle Scholar
  243. Pagnussat GC, Lanteri ML, Lombardo MC, Lamattina L (2004) Nitric oxide mediates the indole acetic acid induction activation of a mitogen-activated protein kinase cascade involved in adventitious root development. Plant Physiol 135:279-286PubMedCrossRefGoogle Scholar
  244. Pan CH, Lee EA, Chae YA, Kim SI (1999) Purification of chitinolytic protein from Rehmannia glutinosa showing N-terminal amino acid sequence similarity to thaumatin-like proteins. Biosci Biotechnol Biochem 63:1138-1140PubMedCrossRefGoogle Scholar
  245. Pandey GK, Cheong YH, Kim KN, Grant JJ, Li L, Hung W, D’Angelo C, Weinl S, Kudla J, Luan S (2004) The calcium sensor calcineurin B-like 9 modulates abscisic acid sensitivity and biosynthesis in Arabidopsis. Plant Cell 16:1912-1924PubMedCrossRefGoogle Scholar
  246. Pardo JM, Reddy MP, Yang S, Maggio A, Huh GH, Matsumoto T, Coca MA, Paino-D’Urzo M, Koiwa H, Yun DJ, Watad AA, Bressan RA, Hasegawa PM (1998) Stress signaling through Ca2C/calmodulin-dependent protein phosphatase calcineurin which mediates salt adaptation in plants. Proc Natl Acad Sci USA 95:9681-9686PubMedCrossRefGoogle Scholar
  247. Patharkar OR, Cushman JC (2000) A stress-induced calcium-dependent protein kinase from Mesembryanthemum crystallinum phosphorylates a two-component pseudo-response regulator. Plant J 24:679-691PubMedCrossRefGoogle Scholar
  248. Patil S, Takezawa D, Poovaiah BW (1995) Chimeric plant calcium/calmodulin-dependent protein kinase gene with a neural visinin-like calcium-binding domain. Proc Natl Acad Sci USA 92:4897-4901PubMedCrossRefGoogle Scholar
  249. Pawson T (2002) Regulation and targets of receptor tyrosine kinases. Eur J Cancer 38:S3-S10CrossRefGoogle Scholar
  250. Peck SC (2003) Early phosphorylation events in biotic stress. Curr Opin Plant Biol 6(4):334-833PubMedCrossRefGoogle Scholar
  251. Pei ZM, MurataY BG, Thomine S, Klusener B, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406:731-734PubMedCrossRefGoogle Scholar
  252. Perry RL, Parker MH, Rudnicki MA (2001) Activated MEK1 binds the nuclear MyoD transcriptional complex to repress transactivation. Mol Cell 8:291-301PubMedCrossRefGoogle Scholar
  253. Petersen M, Brodersen P, Naested H, Andreasson E, Lindhart U, Johansen B, Nielsen HB, Lacy M, Austin MJ, Parker JE, Sharma SB, Klessig DF, Martienssen R, Mattsson O, Jensen AB, Mundy J (2000) Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance. Cell 103:1111-1120PubMedCrossRefGoogle Scholar
  254. Pical C, Fredlund KM, Petit PX, Sommarin M, Moller IM (1993) The outer membrane of plant mitochondria contains a calcium-dependent protein kinase and multiple phosphoproteins. FEBS Lett 336:347-351PubMedCrossRefGoogle Scholar
  255. Pirck M, Pay A, Heberle-Bors E, Hirt H (1993) Isolation and characterization of a phosphoprotein phosphatase type 2A gene from alfalfa. Mol Gen Genet 240:126-131PubMedCrossRefGoogle Scholar
  256. Pitzschke A, Hirt H (2006) Mitogen-activated protein kinases and reactive oxygen species signaling in plants. Plant Physiol 141:351-356PubMedCrossRefGoogle Scholar
  257. Qiu QS, Guo Y, Dietrich MA, Schumaker KS, Zhu JK (2002) Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci USA 99:8436-8441PubMedCrossRefGoogle Scholar
  258. Quan R, Lin H, Mendoza I, Zhang Y, Cao W, Yang Y, Shang M, Chen S, Pardo JM, Guo Y (2007) SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress. Plant Cell 19:1415-1431PubMedCrossRefGoogle Scholar
  259. Quettier AL, Bertrand C, Habricot Y, Miginiac E, Agnes C, Jeannette E, Maldiney R (2006) The phs1-3 mutation in a putative dual-specificity protein tyrosine phosphatase gene provokes hypersensitive responses to abscisic acid in Arabidopsis thaliana. Plant J 47:711-719PubMedCrossRefGoogle Scholar
  260. Quimby BB, Wilson CA, Corbett AH (2000) The interaction between Ran and NTF2 is required for cell cycle progression. Mol Biol Cell 11:2617-2629PubMedGoogle Scholar
  261. Quintero FJ, Ohta M, Shi H, Zhu JK, Pardo JM (2002) Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis. Proc Natl Acad Sci USA 99:9061-9066PubMedCrossRefGoogle Scholar
  262. Radutoiu S, Madsen LH, Madsen EB, Felle HH, Umehara Y, Gronlund M, Sato S, Nakamura Y, Tabata S, Sandal N, Stougaard J (2003) Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature 425:585-592PubMedCrossRefGoogle Scholar
  263. Rashotte AM, DeLong A, Muday GK (2001) Genetic and chemical reductions in protein phosphatase activity alter auxin transport, gravity response and lateral root growth. Plant Cell 13:1683-1697PubMedGoogle Scholar
  264. Ren D, Yang H, Zhang S (2002) Cell death mediated by MAPK is associated with hydrogen peroxide production in Arabidopsis. J Biol Chem 277:559-565PubMedCrossRefGoogle Scholar
  265. Rentel MC, Lecourieux D, Ouaked F, Usher SL, Petersen L, Okamoto H, Knight H, Peck SC, Grierson CS, Hirt H, Knight MR (2004) OXI1 kinase is necessary for oxidative burst-mediated signalling in Arabidopsis. Nature 427:858-861PubMedCrossRefGoogle Scholar
  266. Rodriguez Milla MA, Uno Y, Chang IF, Townsend J, Maher EA, Quilici D, Cushman JC (2006) A novel yeast two-hybrid approach to identify CDPK substrates: characterization of the interaction between AtCPK11 and AtDi19, a nuclear zinc finger protein. FEBS Lett 580:904-911PubMedCrossRefGoogle Scholar
  267. Rodriguez PL (1998) Protein phosphatase 2C (PP2C) function in higher plants. Plant Mol Biol 38:919-927PubMedCrossRefGoogle Scholar
  268. Rodriguez PL, Leube MP, Grill E (1998) Molecular cloning in Arabidopsis thaliana of a new protein phosphatase 2C (PP2C) with homology to ABI1 and ABI2. Plant Mol Biol 38:879-883PubMedCrossRefGoogle Scholar
  269. Romeis T (2001) Protein kinases in the plant defence response. Curr Opin Plant Biol 4:407-414PubMedCrossRefGoogle Scholar
  270. Rudd JJ, Franklin-Tong VE (2001) Unravelling response-specificity in Ca2+ signalling pathways in plant cells. New Phytol 151:7-33CrossRefGoogle Scholar
  271. Rundle SJ, Hartung AJ, Corum JW, O’Neill M III (1995) Characterization of a cDNA encoding the 55 kDa B regulatory subunit of Arabidopsis protein phosphatase 2A. Plant Mol Biol 28:257-266PubMedCrossRefGoogle Scholar
  272. Saez A, Apostolova N, Gonzalez-Guzman M, Gonzalez-Garcia MP, Nicolas C, Lorenzo O, Rodriguez PL (2004) Gain-of-function and loss-of-function phenotypes of the protein phosphatase 2C HAB1 revealits role as a negative regulator of abscisic acid signaling. Plant J 37:354-369PubMedCrossRefGoogle Scholar
  273. Saez A, Robert N, Maktabi MH, Schroeder JI, Serrano R, Rodriguez PL (2006) Enhancement of abscisic acid sensitivity and reduction of water consumption in Arabidopsis by combined inactivation of the protein phosphatases type 2C ABI1 and HAB1. Plant Physiol 141:1389-1399PubMedCrossRefGoogle Scholar
  274. Sai J, Johnson CH (2002) Dark-stimulated calcium ion fluxes in the chloroplast stroma and cytosol. Plant Cell 14:1279-1291PubMedCrossRefGoogle Scholar
  275. Samuel MA, Ellis BE (2002) Double jeopardy: both over-expression and suppression of a redox-activated plant mitogen-activated protein kinase render tobacco plants ozone sensitive. Plant Cell 14:2059-2069PubMedCrossRefGoogle Scholar
  276. Samuel MA, Miles GP, Ellis BE (2000) Ozone treatment rapidly activates MAP Kinase signalling in plants. Plant J 22:367-376PubMedCrossRefGoogle Scholar
  277. Sanders D, Pelloux J, Brownlee C, Harper JF (2002) Calcium at the crossroads of signaling. Plant Cell 14(Suppl):S401-S417Google Scholar
  278. Schaffer R, Landgraf J, Accerbi M, Simon V, Larson M, Wisman E (2001) Microarray analysis of diurnal and circadian-regulated genes in Arabidopsis. Plant Cell 13:113-123PubMedGoogle Scholar
  279. Scheer JM, Ryan CA (2002) From the cover: the systemin receptor SR160 from Lycopersicon peruvianum is a member of the LRR receptor kinase family. Proc Natl Acad Sci USA 99:9585-9590PubMedCrossRefGoogle Scholar
  280. Schillace RV, Scott JD (1999) Organization of kinases, phosphatases and receptor signaling complexes. J Clin Invest 103:761-765PubMedCrossRefGoogle Scholar
  281. Schoenbeck MA, Samac DA, Fedorova M, Gregerson RG, Gantt JS, Vance CP (1999) The alfalfa (Medicago sativa) TDY1 gene encodes a mitogen-activated protein kinase homolog. Mol Plant Microbe Interact 12:882-893PubMedCrossRefGoogle Scholar
  282. Schopfer C, Nasrallah M, Nasrallah J (1999) The male determinant of selfincompatibility in Brassica. Science 286:1697-1700PubMedCrossRefGoogle Scholar
  283. Schroeder JI, Kwak JM, Allen GJ (2001) Guard cell abscisic acid signalling and engineering drought hardiness in plants. Nature 410:327-330PubMedCrossRefGoogle Scholar
  284. Schweighofer A, Hirt H, Meskiene I (2004) Plant PP2C phosphatases: emerging functions in stress signaling. Trends Plant Sci 9:236-243PubMedCrossRefGoogle Scholar
  285. Scofield SR, Tobias CM, Rathjen JP, Chang JH, Lavelle DT, Michelmore RW, Staskawicz BJ (1996) Molecular basis of gene-for-gene specificity in bacterial speck disease of tomato. Science 274:2063-2065PubMedCrossRefGoogle Scholar
  286. Searle IR, Men AE, Laniya TS, Buzas DM, Iturbe-Ormaetxe I, Carroll BJ, Gresshoff PM (2003) Long-distance signaling in nodulation directed by a CLAVATA1-like receptor kinase. Science 299:109-112PubMedCrossRefGoogle Scholar
  287. Seo S, Okamoto M, Seto H, Ishizuka K, Sano H, Ohashi Y (1995) Tobacco MAP kinase: a possible mediator in wound signal transduction pathways. Science 270:1988-1992PubMedCrossRefGoogle Scholar
  288. Seo S, Sano H, Ohashi Y (1999) Jasmonate-based wound signal transduction requires activation of WIPK, a tobacco mitogen-activated protein kinase. Plant Cell 11:289-298PubMedGoogle Scholar
  289. Shah K, Russinova E, Gadella TW, Willemse J, De Vries SC (2002) The Arabidopsis kinase-associated protein phosphatase controls internalization of the somatic embryogenesis receptor kinase 1. Genes Dev 16:1707-1720PubMedCrossRefGoogle Scholar
  290. Sharon H, Lis H (1990) Legume lectin: a large family of homologous proteins. FASEB J 4:3198-3208PubMedGoogle Scholar
  291. Sheen J (1998) Mutational analysis of protein phosphatase 2C involved in abscisic acid signal transduction in higher plants. Proc Natl Acad Sci USA 95:975-980PubMedCrossRefGoogle Scholar
  292. Shi J, Kim KN, Ritz O, Albrecht V, Gupta R, Harter K, Luan S, Kudla J (1999) Novel protein kinases associated with calcineurin B-like calcium sensors in Arabidopsis. Plant Cell 11:2393-2405PubMedGoogle Scholar
  293. Shiozaki K, Russell P (1995) Cell-cycle control linked to extracellular environment by MAP kinase pathway in fission yeast. Nature 378:739-743PubMedCrossRefGoogle Scholar
  294. Shiu SH, Bleecker AB (2001) Plant receptor-like kinase gene family: diversity, function and signaling. Sci STKE, RE22Google Scholar
  295. Shiu SH, Karlowski WM, Pan R, Tzeng YH, Mayer KFX, Li WH (2004) Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell 16:1220-1234PubMedCrossRefGoogle Scholar
  296. Slabas AR, Fordham-Skelton AP, Fletcher D, Martinez-Rivas JM, SwinhoeR CRR, Evans IM (1994) Characterisation of cDNA and genomic clones encoding homologues of the 65 kDa regulatory sub-unit of protein phosphatase 2A in Arabidopsis thaliana. Plant Mol Biol 26:1125-1138PubMedCrossRefGoogle Scholar
  297. Smith RD, Walker JC (1993) Expression of multiple type 1 phosphoprotein phosphatases in Arabidopsis thaliana. Plant Mol Biol 21:307-316PubMedCrossRefGoogle Scholar
  298. Smith RD, Walker JC (1996) Plant protein phosphatases. Annu Rev Plant Physiol Plant Mol Biol 47:101-125PubMedCrossRefGoogle Scholar
  299. Sokolov LN, Dominguez-Solis JR, Allary AL, Buchanan BB, Luan S (2006)A redox-regulated chloroplast protein phosphatase binds to starch diurnally and functions in its accumulation. Proc Natl Acad Sci USA 103, 9732-9737Google Scholar
  300. Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, Gardner J, Wang B, Zhai WX, Zhu LH, Fauquet C, Ronald P (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270:1804-1806PubMedCrossRefGoogle Scholar
  301. Soyano T, Nishihama R, Morikiyo K, Ishikawa M, Machida Y (2003) NQK1/NtMEK1 is a MAPKK that acts in the NPK1 MAPKKK-mediated MAPK cascade and is required for plant cytokinesis. Genes Dev 17:1055-1067PubMedCrossRefGoogle Scholar
  302. Stein JC, Howlett B, Boyes DC, Nasrallah ME, Nasrallah JB (1991) Molecular cloning of a putative receptor protein kinase gene encoded at the self-incompatibility locus of Brassica oleracea. Proc Natl Acad Sci USA 88:8816-8820PubMedCrossRefGoogle Scholar
  303. Stone JM, Trotochaud AE, Walker JC, Clark SE (1998) Control of meristem development by CLAVATA1 receptor kinase and kinase-associated protein phosphatase interactions. Plant Physiol 117:1217-1225PubMedCrossRefGoogle Scholar
  304. Stone RL, Dixon JE (1994) Protein tyrosine phosphatases. J Biol Chem 269:31323-31326PubMedGoogle Scholar
  305. Stracke S, Kistner C, Yoshida S, Mulder L, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J, Szczyglowski K, Parniske M (2002) A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature 417:959-962PubMedCrossRefGoogle Scholar
  306. Suarez-Rodriguez MC, Adams-Phillips L, Liu Y, Wang H, Su SH, Jester PJ, Zhang S, Bent AF, Krysan PJ (2007) MEKK1 is required for flg22-induced MPK4 activation in Arabidopsis plants. Plant Physiol 143:661-669PubMedCrossRefGoogle Scholar
  307. Suh MC, Cho HS, Kim YS, Liu JR, Lee HS (1998) Multiple genes encoding serine/threonine protein phosphatases and their differential expression in Nicotiana tobaccum. Plant Mol Biol 36:315-322PubMedCrossRefGoogle Scholar
  308. Sun Y, Fokar M, Asami T, Yoshida S, Allen R (2004) Characterization of the brassinosteroid insensitive 1 genes of cotton. Plant Mol Biol 54:221-232PubMedCrossRefGoogle Scholar
  309. Suzuki K, Shinshi H (1995) Transient activation and tyrosine phosphorylation of a protein kinase in tobacco cells treated with a fungal elicitor. Plant Cell 7:639-647PubMedGoogle Scholar
  310. Swiderski MR, Innes RW (2001) The Arabidopsis PBS1 resistance gene encodes a member of a novel protein kinase sub-family. Plant J 26:101-112PubMedCrossRefGoogle Scholar
  311. Symons GM, Davies C, Shavrukov Y, Dry IB, Reid JB, Thomas MR (2006) Grapes on steroids - brassinosteroids are involved in grape berry ripening. Plant Physiol 140:150-158PubMedCrossRefGoogle Scholar
  312. Takahashi Y, Berberich T, Yamashita K, Uehara Y, Miyazaki A, Kusano T (2004) Identification of tobacco HIN1 and two closely related genes as spermine-responsive genes and their differential expression during the Tobacco mosaic virus-induced hypersensitive response and during leaf- and flower-senescence. Plant Mol Biol 54:613-622.PubMedCrossRefGoogle Scholar
  313. Takemiya A, Kinoshita T, Asanuma M, Shimazaki K (2006) Protein phosphatase 1 positively regulates stomatal opening in response to blue light in Vicia faba. Proc Natl Acad Sci USA 103:13549-13554Google Scholar
  314. Tang D, Innes RW (2002) Over-expression of a kinase-deficient form of the EDR1 gene enhances powdery mildew resistance and ethylene-induced senescence in Arabidopsis. Plant J 32:975-983PubMedCrossRefGoogle Scholar
  315. Tang X, Frederick RD, Zhou J, Halterman DA, Jia Y, Martin GB (1996) Initiation of plant disease resistance by physical interaction of avrPto and Pto kinase. Science 274:2060-2063PubMedCrossRefGoogle Scholar
  316. Teige M, Scheikl E, Eulgem T, Doczi R, Ichimura K, Shinozaki K, Dangl JL, Hirt H (2004) The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell 15:141-152PubMedCrossRefGoogle Scholar
  317. Tena G, Asai T, Chiu WL, Sheen J (2001) Plant mitogen-activated protein kinase signaling cascades. Curr Opin Plant Biol 74:392-400CrossRefGoogle Scholar
  318. Tichtinsky G, Vanoosthuyse V, Cock JM, Gaude T (2003) Making inroads into plant receptor kinase signaling pathways. Trends Plant Sci 8:231-237PubMedCrossRefGoogle Scholar
  319. Tonks NK, Neel BG (1996) From form to function: signaling by protein tyrosine phosphatases. Cell 87:365-368PubMedCrossRefGoogle Scholar
  320. Tonks NK, Charbonneau H, Diltz CD, Fischer EH, Walsh KA (1988) Demonstration that the leukocyte common antigen CD 45 is a protein tyrosine phosphatase. Biochemistry 27:8695-8701PubMedCrossRefGoogle Scholar
  321. Torii KU, Mitsukawa N, Oosumi T, Matsuura Y, Yokoyama R, Whittier RF, Komeda Y (1996) The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats. Plant Cell 8:735-746PubMedGoogle Scholar
  322. Trotochaud AE, Hao T, Guang W, Yang Z, Clark SE (1999) The CLAVATA1 receptor-like kinase requires CLAVATA3 for its assembly into a signaling complex that includes KAPP and a Rho-related protein. Plant Cell 11:393-405PubMedGoogle Scholar
  323. Trotochaud AE, Jeong S, Clark SE (2000) CLAVATA3, a multimeric ligand for the CLAVATA1 receptor-kinase. Science 289:613-617PubMedCrossRefGoogle Scholar
  324. Ulm R, Revenkova E, di Sansebastiano GP, Bechtold N, Paszkowski J (2001) Mitogen-activated protein kinase phosphatase is required for genotoxic stress relief in Arabidopsis. Genes Dev 15:699-709PubMedCrossRefGoogle Scholar
  325. Vert G, Chory J (2006) Downstream nuclear events in brassinosteroid signalling. Nature 441:96-100PubMedCrossRefGoogle Scholar
  326. Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16(2):123-132PubMedCrossRefGoogle Scholar
  327. Vranova E, Tähtiharju S, Sriprang R, Willekens H, Heino P, Palva ET, Inzé D, Van Camp W (2001) The AKT3 potassium channel protein interacts with the AtPP2CA protein phosphatase 2C. J Exp Bot 52:181-182PubMedCrossRefGoogle Scholar
  328. Wagner TA, Kohorn BD (2001) Wall-associated kinases are expressed throughout plant development and are required for cell expansion. Plant Cell 13:303-318PubMedGoogle Scholar
  329. Walker JC (1994) Structure and function of the receptor-like protein kinases of higher plants. Plant Mol Biol 26:1599-1609PubMedCrossRefGoogle Scholar
  330. Walker JC, Zhang R (1990) Relationship of a putative receptor protein kinase from maize to the S-locus glycoproteins of Brassica. Nature 345:743-746PubMedCrossRefGoogle Scholar
  331. Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218(1):1-14PubMedCrossRefGoogle Scholar
  332. Wang X, Zafian P, Choudhary M, Lawton M (1996) The PR5K receptor protein kinase from Arabidopsis thaliana is structurally related to a family of plant defense proteins. Proc Natl Acad Sci USA 93:2598-2602PubMedCrossRefGoogle Scholar
  333. Wang X, Li X, Meisenhelder J, Hunter T, Yoshida S, Asami T, Chory J (2005) Autoregulation and homodimerization are involved in the activation of the plant steroid receptor BRI1. Dev Cell 8:855-865PubMedCrossRefGoogle Scholar
  334. Wang YS, Pi LY, Chen X, Chakrabarty PK, Jiang J, De Leon AL, Liu GZ, Li L, Benny U, Oard J, Ronald PC, Song WY (2006) Rice XA21 binding protein 3 is an ubiquitin ligase required for full Xa21-mediated disease resistance. Plant Cell 18:3635-3646PubMedCrossRefGoogle Scholar
  335. Wang ZY, Seto H, Fujioka S, Yoshida S, Chory J (2001) BRI1 is a criticalcomponent of a plasma-membrane receptorfor plant steroids. Nature 410:38-383CrossRefGoogle Scholar
  336. Wang ZY, Nakano T, Gendron J, He J, Chen M, Vafeados D, Yang Y, Fujioka S, Yoshida S, Asami T, Chory J (2002) Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Dev Cell 2:505-513PubMedCrossRefGoogle Scholar
  337. Ward JM, Pei ZM, Schroeder JI (1995) Roles of ion channels in initiation of signal transduction in higher plants. Plant Cell 7:833-844PubMedGoogle Scholar
  338. Watillon B, Kettmann R, Boxus P, Burny A (1993) A calcium/calmodulin-binding serine/threonine protein kinase homologous to the mammalian type II calcium/calmodulin-dependent protein kinase is expressed in plant cells. Plant Physiol 101:1381-1384PubMedCrossRefGoogle Scholar
  339. Watillon B, Kettmann R, Boxus P, Burny A (1995) Structure of a calmodulin-binding protein kinase gene from apple. Plant Physiol 108:847-848PubMedCrossRefGoogle Scholar
  340. Weis WI, Drickamer K (1996) Structural basis of lectin-carbohydrate recognition. Annu Rev Biochem 65:441-473PubMedCrossRefGoogle Scholar
  341. White RJ, Davis M, Esmon CA, Myrick TL, Cochran DS, Rundle SJ (2002) Functional analysis of the B0 subunit of Arabidopsis protein phosphatase type 2A. Plant Sci 162:201-209CrossRefGoogle Scholar
  342. White PJ, Broadley MR (2003) Calcium in plants. Ann Bot (Lond) 92:487-511CrossRefGoogle Scholar
  343. Williams RW, Wilson JM, Meyerowitz EM (1997) A possible role for kinase-associated protein phosphatase in the Arabidopsis CLAVATA1 signaling pathway. Proc Natl Acad Sci USA 94:10467-10472PubMedCrossRefGoogle Scholar
  344. Wu Y, Sanchez JP, Lopez-Molina L, Himmelbach A, Grill E, Chua NH (2003) The abi1-1 mutation blocks ABA signaling downstream of cADPR action. Plant J 34:307-315PubMedCrossRefGoogle Scholar
  345. Wurgler-Murphy SM, Saito H (1997) Two-component signal transducers and MAPK cascades. Trends Biochem Sci 22:172-176PubMedCrossRefGoogle Scholar
  346. Xiong L, Yang Y (2003) Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell 15:745-759PubMedCrossRefGoogle Scholar
  347. Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14(Suppl), S165-S183Google Scholar
  348. Xu Q, Fu HH, Gupta R, Luan S (1998) Molecular characterization of a tyrosine-specific protein phosphatase encoded by a stress-responsive gene in Arabidopsis. Plant Cell 10:849-857PubMedGoogle Scholar
  349. Xu J, Li HD, Chen LQ, Wang Y, Liu LL, He L, Wu WH (2006) A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell 125:1347-1360PubMedCrossRefGoogle Scholar
  350. Yamamizo C, Kuchimura K, Kobayashi A, Katou S, Kawakita K, Jones JDG, Doke N, Yoshioka H (2006) Rewiring mitogen-activated protein kinase cascade by positive feedback confers potato blight resistance. Plant Physiol 140:681-692PubMedCrossRefGoogle Scholar
  351. Yamamuro C, Ihara Y, Wu X, Noguchi T, Fujioka S, Takatsuto S, Ashikari M, Kitano H, Matsuoka M (2000) Loss of function of rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell 12:1591-1606PubMedGoogle Scholar
  352. Yang KY, Liu Y, Zhang S (2001) Activation of a mitogen-activated protein kinase pathway is involved in disease resistance in tobacco. Proc Natl Acad Sci USA 98:741-746PubMedCrossRefGoogle Scholar
  353. Yang Y, Shah J, Klessig DF (1997) Signal perception and transduction in plant defense responses. Genes Dev 11:1621-1639PubMedCrossRefGoogle Scholar
  354. Yap Y, Kodama Y, Waller F, Chung KM, Ueda H, ­Nakamura K, Oldsen M, Yoda H, Yamaguchi Y, Sano H (2005) ­Activation of a novel transcription factor through ­phosphorylation by WIPK, a wound-induced mitogen-­activated protein kinase in tobacco plants. Plant Physiol 139:127-137PubMedCrossRefGoogle Scholar
  355. Yin Y, Wang ZY, Mora-Garcia S, Li J, Yoshida S, Asami T, Chory J (2002) BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell 109:181-191PubMedCrossRefGoogle Scholar
  356. Yoo BC, Lee JY, Lucas WJ (2002) Analysis of the complexity of protein kinases within the phloem sieve tube system - characterization of Cucurbita maxima calmodulin-like domain protein kinase 1. J Biol Chem 277:15325-15332PubMedCrossRefGoogle Scholar
  357. Yoshida T, Nishimura N, Kitahata N, Kuromori T, Ito T, Asami T, Shinozaki K, Hirayama T (2006) ABA-hypersensitive germination3 encodes a protein phosphatase 2C (AtPP2CA) that strongly regulates abscisic acid signaling during germination among Arabidopsis protein-phosphatase 2Cs. Plant Physiol 140:115-126PubMedCrossRefGoogle Scholar
  358. Yoshioka H, Numata N, Nakajima K, Katou S, Kawakita K, Rowland O, Jones JDG, Doke N (2003) Nicotiana benthamiana gp91phox homologs NbrbohA and NbrbohB participate in H2O2 accumulation and resistance to Phytophthora infestans. Plant Cell 15:706-718PubMedCrossRefGoogle Scholar
  359. Yu LP, Simon EJ, Trotochaud AE, Clark SE (2000) POLTERGEIST functions to regulate meristem development downstream of the CLAVATA loci. Development 127:1661-1670PubMedGoogle Scholar
  360. Yu LP, Miller AK, Clark SE (2003) POLTERGEIST encodes a protein phosphatase 2C that regulates CLAVATA pathways controlling stem cell identity at Arabidopsis shoots and flower meristems. Curr Biol 13:179-188PubMedCrossRefGoogle Scholar
  361. Yuasa T, Ichimura K, Mizoguchi T, Shinozaki K (2001) Oxidative stress activates AtMPK6, an Arabidopsis homologue of MAP kinase. Plant Cell Physiol 42:1012-1016PubMedCrossRefGoogle Scholar
  362. Yu RM, Wong MM, Jack Rw, Kong RY. (2005) Structure, evolution and expression of a second subfamily of protein phosphatase 2A catalytic subunit genes in the rice plant (Oryza sativa L). Planta 222:757-768PubMedCrossRefGoogle Scholar
  363. Zhan XL, Deschenes RJ, Guan KL (1997) Differential regulation of FUS3MAP kinase by tyrosine-specific phosphatases PTP2-PTP3 and dualspecificity phosphatase MSG5 in Saccharomyces cerevisiae. Genes Dev 11:1690-1702PubMedCrossRefGoogle Scholar
  364. Zhang K, Letham DS, John PCL (1996) Cytokinin controls the cell cycle atmitosis by stimulating the tyrosine dephosphorylation and activation of p34-cdc2-like H1 histone kinase. Planta 200:2-12PubMedCrossRefGoogle Scholar
  365. Zhang L, Lu YT (2003) Calmodulin-binding protein kinases in plants. Trends Plant Sci 8:123-127PubMedCrossRefGoogle Scholar
  366. Zhang L, Liu BF, Liang S, Jones RL, Lu YT (2002) Molecular and biochemical characterization of a calcium/calmodulin-binding protein kinase from rice. Biochem J 368:145-157PubMedCrossRefGoogle Scholar
  367. Zhang S, Klessig DF (1998) Resistance gene N-mediated de novo synthesis and activation of a tobacco mitogen-activated protein kinase by tobacco mosaic virus infection. Proc Natl Acad Sci USA 95:7433-7438PubMedCrossRefGoogle Scholar
  368. Zhang S, Klessig DF (2001) MAPK cascades in plant defense signaling. Trends Plant Sci 6:520-527PubMedCrossRefGoogle Scholar
  369. Zhang S, Liu Y (2001) Activation of salicylic acid-induced protein kinase, a mitogen-activated protein kinase, induces multiple defense responses in tobacco. Plant Cell 13:1877-1889PubMedGoogle Scholar
  370. Zhang S, Liu Y, Klessig DF (2000) Multiple levels of tobacco WIPK activation during the induction of cell death by fungal elicitins. Plant J 23:339-347PubMedCrossRefGoogle Scholar
  371. Zhang S, Chen C, Li L, Meng L, Singh J, Jiang N, Deng XW, He ZH, Lemaux PG (2005a) Evolutionary expansion, gene structure and expression of the rice wall-associated kinase gene family. Plant Physiol 139:1107-1124PubMedCrossRefGoogle Scholar
  372. Zhang T, Wang Q, Chen X, Tian C, Wang X, Xing T, Li Y, Wang Y (2005b) Cloning and biochemical properties of CDPK gene OsCDPK14 from rice. J Plant Physiol 162:1149-1159PubMedCrossRefGoogle Scholar
  373. Zhang T, Liu Y, Yang T, Zhang L, Xu S, Xue L, An L (2006) Diverse signals converge at MAPK cascades in plant. Plant Physiol Biochem 44:274-283PubMedCrossRefGoogle Scholar
  374. Zhang W, Qin C, Zhao J, Wang X (2004) Phospholipase D alpha 1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling. Proc Natl Acad Sci USA 101(25):9508-9513PubMedCrossRefGoogle Scholar
  375. Zhao DZ, Wang GF, Speal B, Ma H (2002) The excess microsporocytes1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther. Genes Dev 16:2021-2031PubMedCrossRefGoogle Scholar
  376. Zhou A, Wang H, Walker JC, Li J (2004) BRL1, a leucine-rich repeat receptor-like protein kinase, is functionally redundant with BRI1 in regulating Arabidopsis brassinosteroid signaling. Plant J 40:399-409PubMedCrossRefGoogle Scholar
  377. Zhou J, Loh YT, Bressan RA, Martin GB (1995) The tomato gene Pti1 encodes a serine/threonine kinase that is phosphorylated by Pto and is involved in the hypersensitive response. Cell 83:925-935PubMedCrossRefGoogle Scholar
  378. Zhou J, Tang X, Martin GB (1997) The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis element of pathogenesis-related genes. EMBO J 16:3207-3218PubMedCrossRefGoogle Scholar
  379. Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247-273PubMedCrossRefGoogle Scholar
  380. Zhu JK, Liu J, Xiong L (1998) Genetic analysis of salt tolerance in Arabidopsis - evidence for a critical role of potassium nutrition. Plant Cell 10:1181-1191PubMedGoogle Scholar
  381. Zimmerlin A, Jupe SC, Bolwell GP (1995) Molecular cloning of the cDNA encoding a stress-inducible protein phosphatase1 (PP1) catalytic subunit from French bean (Phaseolus vulgaris L.). Plant Mol Biol 28:363-368PubMedCrossRefGoogle Scholar
  382. Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JDG, Boller T, Felix G (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125:749-760PubMedCrossRefGoogle Scholar
  383. Zwerger K, Hirt H (2001) Recent advances in plant MAP kinase signalling. Biol Chem 382:1123-1131PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Lee Chae
    • 1
  • Girdhar K Pandey
    • 2
  • Sheng Luan
    • 1
  • Yong Hwa Cheong
    • 3
  • Kyung-Nam Kim
    • 4
  1. 1.Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyUSA
  2. 2.Department of Plant Molecular BiologyUniversity of Delhi South CampusNew DelhiIndia
  3. 3.Department of Bio-Environmental ScienceSunchon National UniversitySuncheonKorea
  4. 4.Department of Molecular BiologySejong UniversitySeoulKorea

Personalised recommendations