Theoretical Spectroscopy of Inner-Shell Electronic Processes and Photochemistry of Fluorescent Molecules

Abstract

The SAC-CI method has been applied to the theoretical spectroscopy of the inner-shell electronic processes and the photochemistry of the organic light-emitting diodes (OLED) and biological chemosensors. Wide varieties of the core-electronic processes such as core-electron ionizations, shake-up satellites, vibrational excitations, valence–Rydberg coupling, and its thermal effect have been investigated by the SAC-CI calculations. The method has also been applied to the electronic spectra and the excited-state dynamics of the polymer materials of OLED such as poly para-phenylene vinylene and fluorene-thiophene. The photochemistry of the biological chemosensor has been elucidated in particular for the photo-induced electron transfer mechanism of the acridine-type fluorescent probe.

Keywords

SAC-IC Theoretical spectroscopy Inner-cell electronic processes Organic-light emitting diodes Priological chemosensors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Nakatsuji, Chem. Phys. Lett. 59, 362 (1978)CrossRefGoogle Scholar
  2. 2.
    H. Nakatsuji, Chem. Phys. Lett. 67, 329 (1979)CrossRefGoogle Scholar
  3. 3.
    H. Nakatsuji, SAC-CI method: Theoretical Aspects and Some Recent Topics, in Computational Chemistry, Review of Current Trends, ed. by J. Leszczyński (World Scientific, Singapore, 1997), Vol. 2, p. 62Google Scholar
  4. 4.
    M. Ehara, J. Hasegawa, H. Nakatsuji, SAC-CI Method Applied to Molecular Spectroscopy, in Theory and Applications of Computational Chemistry: The First 40 Years, eds. by C.E. Dykstra, G. Frenking, K.S. Kim, G. E. Scuseria (Elsevier, Oxford, 2005), p. 1099CrossRefGoogle Scholar
  5. 5.
    M. J. Frisch et al., GAUSSIAN03 (Gaussian Inc., Pittsburgh, PA, 2003)Google Scholar
  6. 6.
    R. Sankari, M. Ehara, H. Nakatsuji, Y. Senba, K. Hosokawa, H. Yoshida, A.D. Fanis, Y. Tamenori, S. Aksela, K. Ueda, Chem. Phys. Lett. 380, 647 (2003)CrossRefGoogle Scholar
  7. 7.
    K. Kuramoto, M. Ehara, H. Nakatsuji, J. Chem. Phys. 122, 014304 (2005)CrossRefGoogle Scholar
  8. 8.
    K. Kuramoto, M. Ehara, H. Nakatsuji, M. Kitajima, H. Tanaka, A.D. Fanis, Y. Tamenori, K. Ueda, J. Electron Spectrosc. Relat. Pheonom. 142, 253 (2005)CrossRefGoogle Scholar
  9. 9.
    K. Ueda, M. Hoshino, T. Tanaka, M. Kitajima, H. Tanaka, A.D. Fanis, Y. Tamenori, M. Ehara, F. Oyagi, K. Kuramoto, H. Nakatsuji, Phys. Rev. Lett. 94, 243004 (2005)CrossRefGoogle Scholar
  10. 10.
    M. Matsumoto, K. Ueda, E. Kukk, H. Yoshida, T. Tanaka, M. Kitajima, H. Tanaka, Y. Tamenori, K. Kuramoto, M. Ehara, H. Nakatsuji, Chem. Phys. Lett. 417, 89 (2006)CrossRefGoogle Scholar
  11. 11.
    R. Sankari, M. Ehara, H. Nakatsuji, A.D. Fanis, S. Aksela, S.L. Sorensen, M.N. Piancastelli, K. Ueda, Chem. Phys. Lett. 422, 51 (2006)CrossRefGoogle Scholar
  12. 12.
    M. Ehara, H. Nakatsuji, M. Matsumoto, T. Hatamoto, X.-J. Liu, T. Lischke, G. Prümper, T. Tanaka, C. Makochekanwa, M. Hoshino, H. Tanaka, J.R. Harries, Y. Tamenori, K. Ueda, J. Chem. Phys. 124, 124311 (2006)CrossRefGoogle Scholar
  13. 13.
    M. Ehara, K. Kuramoto, H. Nakatsuji, M. Hoshino, T. Tanaka, M. Kitajima, H. Tanaka, Y. Tamenori, A.D. Fanis, K. Ueda, J. Chem. Phys. 125, 114304 (2006)CrossRefGoogle Scholar
  14. 14.
    T. Hatamoto, M. Matsumoto, X.-J. Liu, K. Ueda, M. Hoshino, K. Nakagawa, T. Tanaka, H. Tanaka, M. Ehara, R. Tamaki, H. Nakatsuji, J. Electron Spectrosc. Relat. Phenom. 155, 54 (2007)CrossRefGoogle Scholar
  15. 15.
    T. Tanaka, R. Feifel, H. Tanaka, M. Hoshino, M. Kitajima, L. Karlsson, K. Ueda, M. Ehara, R. Fukuda, R. Tamaki, H. Nakatsuji, Chem. Phys. Lett. 435, 182 (2007)CrossRefGoogle Scholar
  16. 16.
    M. Ehara, R. Tamaki, H. Nakatsuji, R. R. Lucchese, J. Soderstrom, T. Tanaka, M. Hoshino, M. Kitajima, H. Tanaka, A. D. Fanis, K. Ueda, Chem. Phys. Lett. 438, 14 (2007)CrossRefGoogle Scholar
  17. 17.
    T. Tanaka, M. Hoshino, H. Kato, M. Ehara, N. Yamada, R. Fukuda, H. Nakatsuji, Y. Tamenori, J. R. Harries, G. Prümper, H. Tanaka, K. Ueda, Phys. Rev. A 77, 012709 (2008)CrossRefGoogle Scholar
  18. 18.
    M. Ehara, H. Nakatsuji, Coll. Czech. Chem. Commun 73, 771 (2008)CrossRefGoogle Scholar
  19. 19.
    B. Saha, M. Ehara, H. Nakatsuji, J. Phys. Chem. A 111, 5473 (2007)Google Scholar
  20. 20.
    P. Poolmee, M. Ehara, S. Hannongbua, H. Nakatsuji, Polymer 46, 6474 (2005)CrossRefGoogle Scholar
  21. 21.
    K. Siegbahn, C. Nordling, G. Johansson, J. Hedman, P.-F. Heden, K. Hamrin, U. Gelius, T. Bergmark, L. O. Werme, R. Manne, Y. Baer, ESCA Applied to Free Molecules (North-Holland, Amsterdam, 1969)Google Scholar
  22. 22.
    A.A. Bakke, A.W. Chen, W.L. Jolly, J. Electron Spectrosc. Relat. Phenom. 20, 333 (1980)CrossRefGoogle Scholar
  23. 23.
    H. Nakatsuji, Chem. Phys. Lett. 177, 331 (1991)CrossRefGoogle Scholar
  24. 24.
    M. Ehara, H. Nakatsuji, Chem. Phys. Lett. 282, 247 (1998)CrossRefGoogle Scholar
  25. 25.
    M. Ehara, M. Ishida, K. Toyota, H. Nakatsuji, SAC-CI General-R method: Theory and Applications to the Multi-Electron Processes, in Reviews in Modern Quantum Chemistry, ed. by K.D. Sen (World Scientific, Singapore, 2002)Google Scholar
  26. 26.
    Y. Ohtsuka, H. Nakatsuji, J. Chem. Phys. 124, 054110 (2006)CrossRefGoogle Scholar
  27. 27.
    P.S. Bagus, H. F. Schaefer III, J. Chem. Phys. 55, 1474 (1971)CrossRefGoogle Scholar
  28. 28.
    J.C. Slater, Adv. Quantum Chem. 6, 1 (1972)CrossRefGoogle Scholar
  29. 29.
    D.P. Chong, J. Chem. Phys. 103, 1842 (1995)CrossRefGoogle Scholar
  30. 30.
    A. Thiel, J. Schirmer, H. Köppel, J. Chem. Phys. 119, 2088 (2003)CrossRefGoogle Scholar
  31. 31.
    G. Angonoa, I. Walter, J. Schirmer, J. Chem. Phys. 87, 6789 (1987)CrossRefGoogle Scholar
  32. 32.
    G. Fronzoni, G.D. Alti, P. Devleva, J. Phys. B 32, 5357 (1999)Google Scholar
  33. 33.
    J. Adachi, N. Kosugi, E. Shigemasa, A. Yagishita, J. Chem. Phys. 102, 7369 (1995)CrossRefGoogle Scholar
  34. 34.
    R. Fukuda, H. Nakatsuji, J. Chem. Phys. 128, 094105 (2008)CrossRefGoogle Scholar
  35. 35.
    J.H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Kckay, R.H. Friend, P.L. Burn, A.B. Holmes, Nature 347, 539 (1990)CrossRefGoogle Scholar
  36. 36.
    J. Gierschner, H.-G. Mack, L. Luer, D. Oelkrug, J. Chem. Phys. 116, 8596 (2002)CrossRefGoogle Scholar
  37. 37.
    A. Pogantsch, G. Heimel, E. Zojer, J. Chem. Phys. 117, 5921 (2002)CrossRefGoogle Scholar
  38. 38.
    Y. Han, S.U. Lee, J. Chem. Phys. 121, 609 (2004)CrossRefGoogle Scholar
  39. 39.
    A. Shukla, H. Ghosh, S. Mazumdar, Phys. Rev. B 67, 245203 (2003)CrossRefGoogle Scholar
  40. 40.
    S. Karabunarliev, M. Baumgarten, K. Mullen, J. Phys. Chem. A 104, 8236 (2000)CrossRefGoogle Scholar
  41. 41.
    H. Nakatsuji, J. Am. Chem. Soc. 95, 345 (1973)CrossRefGoogle Scholar
  42. 42.
    H. Nakatsuji, T. Koga, The Force Concept in Chemistry (Van Nostrand Reinhold, New York, 1981)Google Scholar
  43. 43.
    M. Belletete, S. Beaupre, J. Bouchard, P. Blandin, M. Leclerc, G. Durocher, J. Phys. Chem. B 104, 9118 (2000)CrossRefGoogle Scholar
  44. 44.
    M. Belletete, M. Bedard, M. Leclerc, G. Durocher, J. Mol. Struct.: THEOCHEM 679, 9 (2004)CrossRefGoogle Scholar
  45. 45.
    V. Lukes, D. Wegh, P. Hrdlovic, M. Stefko, K. Matsuzna, V. Laurinc, Syn. Met. 148, 179 (2005)CrossRefGoogle Scholar
  46. 46.
    A. Ojida, I. Hamachi, Bull. Chem. Soc. Jpn. 79, 35 (2006)CrossRefGoogle Scholar
  47. 47.
    A. Ojida, Y. Miyahara, J. Wongkongkatep, S. Tamaru, K. Sada, I. Hamachi, Chem. Asian J. 1, 555 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Institute for Molecular ScienceMyodaijiJapan
  2. 2.JST, CRESTChiyoda-kuJapan
  3. 3.Quantum Chemistry Research InstituteJapan

Personalised recommendations