Thule Expedition 2003 - Studies on Radioactive Contamination and Particles

  • Sven P. Nielsen
  • Per Roos
  • Henning Dahlgaard
  • Svend K. Olsen
  • Jussi Jernström
  • Mats Eriksson
Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC)

Abstract

Analyses of marine and terrestrial samples collected in August 2003from Bylot Sound at Thule, Northwest Greenland, showed that plutonium fromnuclear weapons in the American B52 plane, which crashed on the sea ice inJanuary 1968, persists in the environment. The highest concentrations ofplutonium were found in the marine sediments under the location where theplane crashed. The distribution of plutonium in the marine sediment is veryinhomogeneous and associated with hot particles with activities found up to1500 Bq 239,240Pu. Sediment samples collected in Wolstenholme Fjord northof the accident site showed plutonium concentrations, which illustrate theredistribution of plutonium after the accident. Seawater and seaweed samplesshowed increased concentrations of plutonium in Bylot Sound. The increasedconcentrations are due to resuspension of plutonium-containing particles fromthe seabed and transport further away from the area. Plutonium concentrationsin seawater, seaweed and benthic animals in Bylot Sound were low but clearlyabove background levels. All soil samples collected from Narssarssuk showedaccident plutonium with levels above background. Plutonium was very inhomo-geneously distributed and associated with particles in the surface layers. Hotparticles were found in soil with activities up to 150 Bq 239,240Pu. Varioustechniques were applied in studying and characterising hot particles, mainlythose found in sediments during earlier expeditions. These techniques includedelectron microscopy (SEM-EDX/WDX), secondary ion mass spectrometry(SIMS), and various synchrotron radiation induced techniques including microX-ray fluorescence spectrometry (SR-μ-XRF), micro X-ray fluorescencetomography and micro X-ray absorption near-edge structure spectrometry (SR-μ-XANES). The techniques proved successful in assessing the source of theparticles and their environmental behaviour. Overall, it can be concluded that plutonium in the marine environment at Thule presents an insignificant risk toman. Most plutonium remains in the seabed under Bylot Sound far from manunder relatively stable conditions and concentrations of plutonium in seawaterand animals are low. However, the plutonium contamination of surface soil atNarssarssuk could constitute a small risk to humans visiting the location ifradioactive particles are resuspended in the air so that they might be inhaled.

Keywords

Thule plutonium accident SIMS SR-μ-XRF SR-μ-XANES 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aarkrog, A. (1971) Radioecological investigation of plutonium in an arctic marine environment,Health Phys. 20:31–47.Google Scholar
  2. Aarkrog, A. (1977) Environmental behavior of plutonium accidentally released at Thule,Greenland, Health Phys. 32:271–284.Google Scholar
  3. Aarkrog, A., Buch, E., Chen, Q.J., Christensen, G.C., Dahlgaard, H., Hansen, H., Holm, E., and Nielsen, S.P. (1988) Environmental Radioactivity in the North Atlantic Region Including theFaroe Islands and Greenland. 1986, Risø-R-550, Risø National Laboratory, Roskilde, Denmark.Google Scholar
  4. Aarkrog, A., Chen, Q.J., Clausen, J., Christensen, G.C., Dahlgaard, H., Ellis, K., Hansen, H., Holm,E., Joensen, H.P., Nielsen, S.P., and Strandberg, M. (1997) Environmental Radioactivity in theNorth Atlantic Region Including the Faroe Islands and Greenland. 1992 and 1993, Risø-R-757, Risø National Laboratory, Roskilde, Denmark.Google Scholar
  5. Aarkrog, A., Boelskifte, S., Dahlgaard, H., Duniec, S., Holm, E., and Smith, J.N. (1987) Studiesof transuranics in an arctic marine environment, J. Radioanal. Nucl. Chem. Art. 115:39–50.CrossRefGoogle Scholar
  6. Aarkrog, A., Dahlgaard, H., and Nilsson, K. (1984) Further studies of Plutonium and Americiumat Thule, Greenland, Health Phys. 46:29–44.CrossRefGoogle Scholar
  7. Aarkrog, A., Dahlgaard, H., Holm, E., Hansen, H., Lippert, J., and Nilsson, K. (1981)Environmental Radioactivity in Greenland in 1980, Risø-R-449, Risø National Laboratory,Roskilde, Denmark.Google Scholar
  8. Chen, Q.J., Aarkrog, A., Nielsen, S.P., Dahlgaard, H., Lind, B., Kolstad, A.K., and Yu, Yixuan(2001) Procedures for Determination of 239,240Pu, 241Am, 237Np, 234,238U, 228,230,232Th, 99Tc and210Pb-210Po in Environmental Materials, Risø-R-1263(EN), Risø National Laboratory,Roskilde, Denmark.Google Scholar
  9. Chen, Q.J., Hou, X.L., Yu, Y.X., Dahlgaard, H., and Nielsen, S.P. (2002) Separation of Sr fromCa, Ba and Ra by means of Ca(OH)2 and Ba(Ra)Cl2 or Ba(Ra)SO4 for the determination ofradiostrontium, Anal. Chim. Acta 466:109–116.CrossRefGoogle Scholar
  10. Dahlgaard, H., Chen, Q.J., Stiirup, S., Eriksson, M., Nielsen, S.P., and Aarkrog, A. (1999a)Plutonium Isotope Ratios in Environmental Samples from Thule (Greenland) and the TechaRiver (Russia) Measured by ICP-MS and a-Spectrometry, IAEA-SM-3541109, Vienna,Austria, pp. 254–259.Google Scholar
  11. Dahlgaard, H., Eriksson, M., Ilus, E., Ryan, T., McMahon, C.A., and Nielsen, S.P. (1999b) Plutonium in an Arctic Marine Environment 29 years After the Thule Accident, NordicSociety for Radiation Protection, 12th ordinary meeting, Skagen, Denmark.Google Scholar
  12. Eriksson, M. (2002) On Weapons Plutonium in the Arctic Environment (Thule, Greenland), Risø-R-1321(EN), Risø National Laboratory, Roskilde, DenmarkGoogle Scholar
  13. Eriksson, M., Dahlgaard, H., Ilus, E., Ryan, T., Chen, Q.J., Holm, E., and Nielsen, S.P. (1999)Plutonium in the marine environment of Thule Air Base, N.W. Greenland. Inventories anddistribution in sediments 29 years after the accident, in: Extended Abstracts. 4. InternationalConference on Environmental Radioactivity in the Arctic, P. Strand, T. Jølle, eds., NorwegianRadiation Protection Authority, Østerås, pp. 60–62.Google Scholar
  14. Eriksson, M., Lindahl, P., Roos, P., Dahlgaard, H., and Holm, E. (2007) The U, Pu and Amnuclear signatures of the Thule hydrogen bomb debris, submitted to Environ. Sci. Tech. Google Scholar
  15. Eriksson, M., Ljunggren, K., and Hindorf, C. (2002) Plutonium hot particle separation techniquesusing real-time digital image systems, Nucl. Instrum. Meth. A 488:375–380.CrossRefGoogle Scholar
  16. Eriksson, M., Osan, J., Jernström, J., Wegrzynek, D., Simon, R., Chinea-Cano, E., Markowicz,A., Bamford, S., Tamborini, G., Török, S., Falkenberg, G., Alsecz, A., Dahlgaard, H.,Wobrauschek, P., Streli, C., Zoeger, N., and Betti, M. (2005) Source term identification ofenvironmental radioactive Pu/U particles by their characterization with non-destructivespectrochemical analytical techniques, Spectrochim. Acta Part B 60:455–469.CrossRefGoogle Scholar
  17. Hanson, W.C. (1980) Transuranic elements in arctic tundra ecosystems, in: Transuranic Elementsin the Environment, W. C. Hanson, ed., DOE/TIC-22800, Springfield, VA.Google Scholar
  18. Jensen, J.B. (2003) Akustisk Kortlægning af Havbundssedimenterne i Bylot Sund, Thule. GEUSRapport 2003/103, Danmarks og Grønlands Geologiske Undersøgelse, Miljøministeriet.Google Scholar
  19. Lind, O.C., Salbu, B., Janssens, K., Proost, K., García-León, M., and García-Tenorio, R. (2007)Characterization of U/Pu particles originating from the nuclear weapon accidents at Palomares,Spain, 1966 and Thule, Greenland, 1968, Sci. Total Environ. 376:294–305.CrossRefGoogle Scholar
  20. McMahon, C.A., Leon Vintro, L., Mitchell, P.I., and Dahlgaard, H. (2000) Oxidation-statedistribution of plutonium in surface and subsurface waters at Thule, northwest Greenland,Appl. Radiat. Isot. 52:697–703.CrossRefGoogle Scholar
  21. Michel, H., Barci-Funel, G., Dalmasso, J., Ardisson, G., Appelby, P.G., Haworth, E., and El-Daoushy, F. (2002) Plutonium and americium inventories in atmospheric fallout and sedimentcores from Blelham tarn, Cumbria (UK), J. Environ. Radioact. 59:127–137.CrossRefGoogle Scholar
  22. Moring, M., Ikäheimonen, T.K., Pöllänen, R., Ilus, E., Klemola, S., Juhanoja, J., and Eriksson, M.(2001) Uranium and plutonium containing particles in a sea sediment sample from Thule,Greenland, J. Radioanal. Nucl. Chem. 248:623–627.CrossRefGoogle Scholar
  23. Nielsen, S.P. and Roos, P. (2006) Thule-2003 — Investigation of Radioactive Contamination,Risø-R-1549(EN), Risø National Laboratory, Roskilde, Denmark.Google Scholar
  24. Perkins, R.W. and Thomas, C.W. (1980) World wide fallout, in: Transuranic Elements in theEnvironment, W. C. Hanson, ed., DOE/TIC-22800, Springfield, VA.Google Scholar
  25. Ranebo, Y., Eriksson, M., Tamborini, G., Niagolova, N., Bildstein, O., and Betti, M. (2007) Theuse of SIMS and SEM for the characterization of individual particles with a matrix originatingfrom a nuclear weapon, Microsc. Microanal. 13:179–190.CrossRefGoogle Scholar
  26. U.S. Air Force (1970) Project Crested Ice, USAF Nucl. Safety 65:1–97.Google Scholar
  27. Vibe, C. (1950) The marine mammals and the marine fauna in the Thule district (NorthwestGreenland) with observations on ice conditions in 1939-41, Meddelelser om Grønland 150:1–117.Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2009

Authors and Affiliations

  • Sven P. Nielsen
    • 1
  • Per Roos
    • 1
  • Henning Dahlgaard
    • 1
  • Svend K. Olsen
    • 1
  • Jussi Jernström
    • 1
  • Mats Eriksson
    • 2
  1. 1.Radiation Research Division, Risoe National Laboratory for Sustainable EnergyTechnical University of Denmark – DTURoskildeDenmark
  2. 2.IAEA Marine Environment Laboratory (IAEA-MEL)4 Quai Antoine 1erMonaco

Personalised recommendations