Lake Ice Phenology

  • David M. LivingstoneEmail author
  • Rita Adrian
  • Thorsten Blenckner
  • Glen George
  • Gesa A. Weyhenmeyer
Part of the Aquatic Ecology Series book series (AQEC, volume 4)


In Chapter 5 of this book, it is shown that the formation of ice on the surface of a lake (‘ice-on’) and its thawing and ultimate disappearance (‘ice-off’) are complex phenomena governed by mechanisms that involve many interacting meteorological (and some non-meteorological) forcing factors. Linking ice phenology – the timing of ice-on and ice-off – to climatic forcing might therefore be expected to be a difficult task. This task, however, is simplified considerably by the fact that air temperature is the dominant variable driving ice phenology (Williams, 1971; Ruosteenoja, 1986; Vavrus et al., 1996; Williams and Stefan, 2006), and is also correlated to some extent with other relevant meteorological driving variables such as solar radiation, relative humidity and snowfall.


North Atlantic Oscillation Winter North Atlantic Oscillation Index Pacific North America Altitudinal Dependence Laurentian Great Lake Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The CLIME project was supported under contract EVK1-CT-2002-00121 by the 5th EU Framework Programme for Research and Technological Development. The participation of DML was made possible by funding from the Swiss Federal Office for Education and Science. The authors gratefully acknowledge all individuals and institutes involved in collecting the data on which this chapter is based.


  1. Adrian, R. and Hintze, T. (2000) Effects of winter air temperature on the ice phenology of the Müggelsee (Berlin, Germany), Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 27 (5), 2808–2811.Google Scholar
  2. Adrian, R., Walz, N., Hintze, T., Hoeg, S. and Rusche, R. (1999) Effects of ice duration on plankton succession during spring in a shallow polymictic lake, Freshwater Biology 41, 621–632.CrossRefGoogle Scholar
  3. Anderson, W. L., Robertson, D. M. and Magnuson, J. J. (1996) Evidence of recent warming and El-Niño-related variations in ice breakup of Wisconsin lakes, Limnology and Oceanography 41, 815–821.CrossRefGoogle Scholar
  4. Arakawa, H. (1954) Fujiwhara on five centuries of freezing dates of Lake Suwa in the central Japan, Archiv für Meteorologie Geophysik und Bioklimatologie Serie B 6(1–2), 152–166.CrossRefGoogle Scholar
  5. Assel, R. and Robertson, D. M. (1995) Changes in winter air temperatures near Lake Michigan, 1851–1993, as determined from regional lake-ice records, Limnology and Oceanography 40(1), 165–176.CrossRefGoogle Scholar
  6. Austin, J. A. and Colman, S. M. (2007) Lake Superior summer water temperatures are increasing more rapidly than regional air temperatures: a positive ice-albedo feedback, Geophysical Research Letters 34, L06604, doi:10.1029/2006GL029021.Google Scholar
  7. Benson, B. J., Magnuson, J. J., Jacob, R. L. and Fuenger, S. L. (2000) Response of lake ice breakup in the Northern Hemisphere to the 1976 interdecadal shift in the North Pacific, Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 27(5), 2770–2774.Google Scholar
  8. Blenckner, T., Järvinen, M. and Weyhenmeyer, G. A. (2004) Atmospheric circulation and its impact on ice phenology in Scandinavia, Boreal Environment Research 9, 371–380.Google Scholar
  9. Bonsal, B. R., Prowse, T. D., Duguay, C. R. and Lacroix, M. P. (2006) Impacts of large-scale teleconnections on freshwater-ice break/freeze-up dates over Canada, Journal of Hydrology 330, 340–353.CrossRefGoogle Scholar
  10. Duguay, C. R., Prowse, T. D., Bonsal, B. R., Brown, R. D., Lacroix, M. P. and Ménard, P. (2006) Recent trends in Canadian lake ice cover, Hydrological Processes 20, 781–801.CrossRefGoogle Scholar
  11. Eckel, O. (1955) Statistisches zur Vereisung der Ostalpenseen, Wasser und Leben 7, 49–57.Google Scholar
  12. George, D. G. (2007) The impact of the North Atlantic Oscillation on the development of ice on Lake Windermere, Climatic Change 81, 455–468.CrossRefGoogle Scholar
  13. Gordon, G. A., Lough, J. M., Fritts, H. C. and Kelly, P. M. (1985) Comparison of sea level pressure reconstructions from western North American tree rings with a proxy record of winter severity in Japan, Journal of Climate and Applied Meteorology 24, 1219–1224.CrossRefGoogle Scholar
  14. Gray, B. M. (1974) Early Japanese winter temperatures, Weather 29, 103–107.Google Scholar
  15. Hodgkins, G. A., James, I. C., II, and Huntington, T. G. (2002) Historical changes in lake ice-out dates as indicators of climate change in New England, 1850–2000, International Journal of Climatology 22, 1819–1827.CrossRefGoogle Scholar
  16. Hurrell, J. W. (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation, Science 269, 676–679.CrossRefGoogle Scholar
  17. Jensen, O. P., Benson, B. J., Magnuson, J. J., Card, V. M., Futter, M. N., Soranno, P. A. and Stewart, K. M. (2007) Spatial analysis of ice phenology trends across the Laurentian Great Lakes region during a recent warming period, Limnology and Oceanography 52(5), 2013–2026.CrossRefGoogle Scholar
  18. Johnson, S. L. and Stefan, H. G. (2006) Indicators of climate warming in Minnesota: lake ice covers and snowmelt runoff, Climatic Change 75, 421–453.CrossRefGoogle Scholar
  19. Korhonen, J. (2006) Long-term changes in lake ice cover in Finland, Nordic Hydrology 37, 347–363.CrossRefGoogle Scholar
  20. Kuusisto, E. (1987) An analysis of the longest ice observation series made on Finnish lakes, Aqua Fennica 17(2), 123–132.Google Scholar
  21. Kuusisto, E. (1993) Lake ice observations in Finland in the 19th and 20th Century: any message for the 21st? In: R. G. Barry, B. E. Goodison and E. F. Ledrew (eds.), Snow Watch '92 – Detection Strategies for Snow and Ice. Glaciological data rep. GD-25, World Data Center A, Boulder, Colo. p. 57–65.Google Scholar
  22. Livingstone, D. M. (1997) Break-up dates of Alpine lakes as proxy data for local and regional mean surface air temperatures, Climatic Change 37, 407–439.CrossRefGoogle Scholar
  23. Livingstone, D. M. (1999) Ice break-up on southern Lake Baikal and its relationship to local and regional air temperatures in Siberia and to the North Atlantic Oscillation, Limnology and Oceanography 44(6), 1486–1497.CrossRefGoogle Scholar
  24. Livingstone, D. M. (2000) Large-scale climatic forcing detected in historical observations of lake ice break-up, Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 27(5), 2775–2783.Google Scholar
  25. Livingstone, D. M. and Adrian R. (2009) Modeling the duration of intermittent ice cover on a lake for climate-change studies. Limnology and Oceanography 54(5), 1709–1722.Google Scholar
  26. Livingstone, D. M. and Dokulil, M. T. (2001) Eighty years of spatially coherent Austrian lake surface water temperatures and their relationship to regional air temperature and the North Atlantic Oscillation, Limnology and Oceanography 46(5), 1220–1227.CrossRefGoogle Scholar
  27. Magnuson, J. J., Benson, B. J. and Kratz, T. K. (2004) Patterns of coherent dynamics within and between lake districts at local to intercontinental scales, Boreal Environment Research 9, 359–369.Google Scholar
  28. Magnuson, J. J., Benson, B. J., Jensen, O. P., Clark, T. B., Card, V., Futter, M. N., Soranno, P. A. and Stewart, K. M. (2005) Persistence of coherent of ice-off dates for inland lakes across the Laurentian Great Lakes region, Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 29(1), 521–527.Google Scholar
  29. Magnuson, J. J., Robertson, D. M., Benson, B. J., Wynne, R. H., Livingstone, D. M., Arai, T., Assel, R. A., Barry, R. G., Card, V., Kuusisto, E., Granin, N. G., Prowse, T. D., Stewart, K. M. and Vuglinski, V. S. (2000a) Historical trends in lake and river ice cover in the Northern Hemisphere, Science 289, 1743–1746 and Errata 2001, Science 291, 254.Google Scholar
  30. Magnuson, J. J., Wynne, R. H., Benson, B. J. and Robertson, D. M. (2000b) Lake and river ice as a powerful indicator of past and present climates, Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 27(5), 2749–2756.Google Scholar
  31. Palecki, M. A. and Barry, R. G. (1986) Freeze-up and break-up of lakes as an index of temperature changes during the transition seasons: a case study for Finland, Journal of Climate and Applied Meteorology 25, 893–902.CrossRefGoogle Scholar
  32. Pfister, C. (1984) Klimageschichte der Schweiz 1525–1860. Das Klima der Schweiz von 1525–1860 und seine Bedeutung in der Geschichte von Bevölkerung und Landwirtschaft, Verlag Paul Haupt, Berne. 245 pp.Google Scholar
  33. Robertson, D. M., Ragotzskie, R. A. and Magnuson, J. J. (1992) Lake ice records used to detect historical and future climatic change, Climatic Change 21, 407–427.CrossRefGoogle Scholar
  34. Robertson, D. M., Wynne, R. H. and Chang, W. B. (2000) Influence of El Niño on lake and river ice cover in the Northern Hemisphere from 1900 to 1995, Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 27(5), 2784–2788.Google Scholar
  35. Ruosteenoja, K. (1986) The date of break-up of lake ice as a climatic index, Geophysica 22, 89–99.Google Scholar
  36. Simojoki, H. (1940) Über die Eisverhältnisse der Binnenseen Finnlands, Annales Academiæ Scientiarum Fennicæ A 52, 1–194.Google Scholar
  37. Skinner, W. R. (1986) The break-up and freeze-up of lake and sea ice in Northern Canada. Can. Climate Centre rep. 86–8, Atmospheric Environmental Service, Downsview, Ont., 62 pp. (unpubl. ms.)Google Scholar
  38. Skinner, W. R. (1993) Lake ice conditions as a cryospheric indicator for detecting climate variability in Canada, In: R. G. Barry, B. E. Goodison and E. F. Ledrew (eds.), Snow Watch '92 – Detection Strategies for Snow and Ice. Glaciological data rep. GD-25, World Data Center A, Boulder, Colo. p. 204–240.Google Scholar
  39. Šporka, F., Livingstone, D. M., Stuchlík, E., Turek, J. and Galas J. (2006) Water temperatures and ice cover in the lakes of the Tatra Mountains, Biologia 61(Suppl. 18), S77–S90.Google Scholar
  40. Stewart, K. M. and Haugen, R. K. (1990) Influence of lake morphometry on ice dates, Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 24, 122–127.Google Scholar
  41. Tanaka, M. and Yoshino, M. M. (1982) Re-examination of the climatic change in central Japan based on freezing dates of Lake Suwa, Weather 37, 252–259.Google Scholar
  42. Todd, M. C. and Mackay, A. W. (2003) Large-scale climate controls on Lake Baikal ice cover. Journal of Climate 16, 3186–3199.CrossRefGoogle Scholar
  43. Tramoni, F., Barry, R. G. and Key, J. (1985) Lake ice cover as a temperature index for monitoring climate perturbations, Zeitschrift für Gletscherkunde und Glazialgeologie 21, 43–49.Google Scholar
  44. Trenberth, K. E., Jones, P. D., Ambenje, P., Bojariu, R., Easterling, D., Klein Tank, A., Parker, D., Rahimzadeh, F., Renwick, J. A., Rusticucci, M., Soden, B. and Zhai, P. (2007) Observations: surface and atmospheric climate change, In: S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor and H. L. Miller (eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom, and New York, NY, USA, pp. 235–336.Google Scholar
  45. Vavrus, S. J., Wynne, R. H. and Foley, J. A. (1996) Measuring the sensitivity of southern Wisconsin lake ice to climate variations and lake depth using a numerical model, Limnology and Oceanography 41, 822–831.CrossRefGoogle Scholar
  46. Weyhenmeyer, G. A., Blenckner, T. and Pettersson, K. (1999) Changes of the plankton spring outburst related to the North Atlantic Oscillation, Limnology and Oceanography 44(7), 1788–1792.CrossRefGoogle Scholar
  47. Weyhenmeyer, G. A., Meili, M. and Livingstone, D. M. (2004) Nonlinear temperature response of lake ice breakup, Geophysical Research Letters 31(7), L07203, doi:10.1029/2004GL019530.Google Scholar
  48. Weyhenmeyer, G. A., Meili, M. and Livingstone, D. M. (2005) Systematic differences in the trend toward earlier ice-out on Swedish lakes along a latitudinal temperature gradient, Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 29(1), 257–260.Google Scholar
  49. Williams, G. P. (1971) Predicting the date of lake ice break-up. Water Resources Research 7, 323–333.CrossRefGoogle Scholar
  50. Williams, S. G. and Stefan, H. G. (2006) Modeling of lake ice characteristics in North America using climate, geography, and lake bathymetry, Journal of Cold Regions Engineering 20, 140–167.CrossRefGoogle Scholar
  51. Yoo, J. and D’Odorico, P. (2002) Trends and fluctuations in the dates of ice break-up of lakes and rivers in Northern Europe: the effect of the North Atlantic Oscillation, Journal of Hydrology 268, 100–112.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • David M. Livingstone
    • 1
    Email author
  • Rita Adrian
    • 2
  • Thorsten Blenckner
    • 3
  • Glen George
    • 4
  • Gesa A. Weyhenmeyer
    • 5
  1. 1.Eawag, Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
  2. 2.Leibniz-Institute of Freshwater Ecology and Inland FisheriesBerlinGermany
  3. 3.Erken Laboratory, Department of Ecology and EvolutionEBC, Uppsala UniversityNorrtäljeSweden
  4. 4.Knott EndWindermereUK
  5. 5.Department of Ecology and Evolution/LimnologyUppsala UniversityUppsalaSweden

Personalised recommendations