Impacts of Climate on the Flux of Dissolved Organic Carbon from Catchments

  • Eleanor Jennings
  • Marko Järvinen
  • Norman Allott
  • Lauri Arvola
  • Karen Moore
  • Pam Naden
  • Caitriona Nic Aonghusa
  • Tiina Nõges
  • Gesa A. Weyhenmeyer
Chapter
Part of the Aquatic Ecology Series book series (AQEC, volume 4)

Abstract

Recent increases in dissolved organic carbon (DOC) concentrations in surface waters across both Europe and North America have focused attention on the factors controlling the export of DOC compounds from catchments. Waters containing high concentrations of DOC generally have a characteristic brown colour and are associated with the presence of highly organic soils. Catchments dominated by these soils typically export between 10 and 300 kg DOC ha−1 year−1 (Billett et al., 2004; Laudon et al., 2004; Jonsson et al., 2006). A portion of this DOC is mineralised in streams and lakes to CO2, while the remainder is transported to the sea (Jonsson et al., 2006). Organic matter accumulates in soils when decomposition rates are restricted either by low temperatures or water-logged conditions. In Europe organic soils are found mainly in colder, wetter

Notes

Acknowledgements

The authors wish to thank Dublin City Council (Ireland) for use of monitoring data from Poulaphuca Reservoir and Met Éireann (Ireland) for providing meteorological data; the Swedish Meteorological and Hydrological Institute for providing meteorological data and the Department of Environmental Assessment (Sweden), financed by the Swedish Environmental Protection Agency, for use of water monitoring data; Marine Institute staff for assistance with monitoring at Lough Feeagh (Burrishoole catchment), Ireland; G.A. Weyhenmeyer (research fellow of the Royal Swedish Academy of Sciences) was part funded by a grant from the Knut and Alice Wallenberg foundation research; T. Nõges (Estonia) was part funded by Target funding project SF0170011508 and Estonian Science Foundation grant 7600.

References

  1. Andersson, T., Nilsson, Å. and Janssot. M. (1991) Coloured substances in Swedish lakes and rivers, Lecture Notes in Earth Sciences 33, 243–253.CrossRefGoogle Scholar
  2. Apsite, E. and Klavins, M. (1998) Assessment of the changes of COD and color in rivers of Latvia during the last twenty years, Environmenl International 24, 637–643.CrossRefGoogle Scholar
  3. Arvola, L., Eloranta, P., Järvinen, M., Keskitalo, J. and Holopainen, A.-L. (1999) Phytoplankton. In Keskitalo and P. Eloranta (eds.), Limnology of humic waters, Backhuys Publishers, Leiden, Netherlands, pp.137–171.Google Scholar
  4. Arvola, L., Räike, A., Kortelainen, P and Järvinen, M. (2004) The effect of climate and landuse on TOC concentrations in Finnish rivers, Boreal Environment Research 9, 381–387.Google Scholar
  5. Billett, M.F., Palmer, S.M., Hope, D., Deacon, C., Storeton-West, R., Hargreaves, K.J., Flechard, C. and Fowler, D. (2004) Linking land-atmosphere-stream carbon fluxes in a lowland peatland system, Global Biogeochemical Cycles 18, GB1024, doi: 10.1029/2003GB002058.Google Scholar
  6. Bouchard, A. (1997) Recent lake acidification and recovery trends in southern Quebec, Canada, Water, Soil and Air Pollution 84, 225–245.Google Scholar
  7. Buishand, T.A. (1982) Some methods for testing the homogeneity of rainfall records, Journal of Hydrology 58, 11–27.CrossRefGoogle Scholar
  8. Byrne, K., Farrell, E.P., Papen, H. and Butterbach-Bahl, K. (2001) The influence of temperature on carbon dioxide production in laboratory columns of virgin and forested blanket peat, International Peat Journal 11, 35–42.Google Scholar
  9. Chapman, S.J. and Thurlow, M. (1998) Peat respiration at low temperatures, Soil Biology and Biochemistry 30, 1013–1021.CrossRefGoogle Scholar
  10. Chow, A.T., Tanji, K.K., Gao, S., and Dahlgren, R.A. (2006) Temperature, water content and wet-dry cycle effects on DOC production and carbon mineralization in agricultural peat soils, Soil Biology and Biochemistry 38, 477–488.CrossRefGoogle Scholar
  11. Clark, J.M., Chapman, P.J., Adamson, J.K. and Lane, S.N. (2005) Influence of drought induced acidification on the mobility of dissolved organic carbon in a peat soil, Global Change Biology 11, 791–809.CrossRefGoogle Scholar
  12. Cummins, T. and Farrell, E.P. (2003) Biogeochemical impacts of clearfelling and reforestation on blanket-peatland streams – II. major ions and dissolved organic carbon, Forest Ecology and Management 180, 557–570.CrossRefGoogle Scholar
  13. Davidson, E.A. and Janssens, I.A. (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change, Nature 440, 165–173.CrossRefGoogle Scholar
  14. de Wit, H., Mulder, J. and Atlehindar. A. (2007) Long-term increase in dissolved organic carbon in streamwaters in Norway is response to reduced acid deposition, Environmental Science and Technology 41, 7706–7713.CrossRefGoogle Scholar
  15. Driscoll, C.T., Driscoll, K.M., Roy, K.M., and Mitchell, M.J. (2003) Chemical response of lakes in the Adirondack region of New York to declines in acidic deposition, Environmental Science and Technology 37, 2036–2042.CrossRefGoogle Scholar
  16. Eliasson, P.E., McMurtrie, R.E., Pepper, D.A., Strömgren, M., Linder, S. and Ågren, G.I. (2005) The response of heterotrophic CO2 flux to soil warming, Global Change Biology 11, 167–181.CrossRefGoogle Scholar
  17. Eloranta, P. (1978) Light penetration in different types of lakes in Central Finland, Holarcic. Ecology 1, 362–366.Google Scholar
  18. Erlandsson, M., Buffam, I., Fölster, J., Laudon, H., Temnerud, J., Weyhenmeyer, G.A. and Bishop, K. (2008) 35 years of synchrony in the organic matter concentrations of Swedish rivers explained by variation in flow and sulphate, Global Change Biologydoi:10.1111/j.1365-2486.2008.01551.x.Google Scholar
  19. Evans, C.D., Monteith, D.T and Cooper, D.M. (2005) Long-term increases in surface water dissolved organic carbon: observations, possible causes and environmental impacts, Environmental Pollution 137, 55–71.CrossRefGoogle Scholar
  20. Evans, C.D., Chapman, P.J., Clark, J.M., Monteith, D.T. and Cresser, M.S. (2006) Alternative explanations for rising dissolved organic carbon export from organic soils,Global Change Biology 12, 2044–2053.CrossRefGoogle Scholar
  21. Fenner, N., Freeman, C., Hughes, S. and Reynolds, B. (2001) Molecular weight spectra of dissolved organic carbon in a rewetted Welsh peatland and possible implications for water quality, Soil Use and Management 17, 106–112.CrossRefGoogle Scholar
  22. Fenner, N., Freeman, C. and Reynolds, B. (2005) Observations of a seasonally shifting thermal optimum in peatland carbon-cycling processes; implications for the global carbon cycle and soil enzyme methodologies, Soil Biology and Biochemistry 37, 1814–1821.CrossRefGoogle Scholar
  23. Forsberg, C. and Petersen, R.C. (1990) A darkening of Swedish lakes due to increased humus inputs during the last 15 years, Verhandlungen der Internationalen Vereinigung der Limnologie 24, 289–292.Google Scholar
  24. Francko, D.A. and Heath, R.T. (1983) Abiotic uptake and photodependent release of phosphate from high-molecular-weight humic-iron complexes in bog lakes. In R.F. Christman and E. Gjessing (eds.), Aquatic and terrestrial humic materials, Ann Arbor Scientific Publications, Ann Arbor, pp.467–480.Google Scholar
  25. Freeman, C., Evans, C.D., Monteith, D.T., Reynolds, B. and Fenner, N. (2001a) Export of organic carbon from peat soils, Nature 412, 785.CrossRefGoogle Scholar
  26. Freeman, C., Ostle, N. and Kang, H. (2001b) An enzymic ‘latch’ on a global carbon store - a shortage of oxygen locks up carbon in peatlands by restraining a single enzyme, Nature 409, 149.CrossRefGoogle Scholar
  27. Freeman, C., Fenner, N., Ostle, N.J., Kang, H., Dowrick, D.J., Reynolds, B., Lock, M.A., Sleep, D., Hughes, S. and Hudson, J. (2004) Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels, Nature 430, 195–198.CrossRefGoogle Scholar
  28. Fröberg, M., Berggren, D., Bergkvist, B., Bryant, C. and Mulder, J. (2006) Concentration and fluxes of dissolved organic carbon DOC in three Norway spruce stands along a climatic gradient in Sweden, Biogeochemistry 77, 1–23.CrossRefGoogle Scholar
  29. Gjessing, E.T. (1970) Reduction of aquatic humus in streams, Vatten 26, 14–23.Google Scholar
  30. Gorham, E. (1991) Northern peatlands: role in the carbon cycle and probable response to global warming, Ecological Applications 1, 182–195.CrossRefGoogle Scholar
  31. Hartley, I.P., Heinmeyer, A. and Ineson, P. (2007) Effects of three years of soil warming and shading on the rate of soil respiration: substrate availability and not thermal acclimation mediates observed response, Global Change Biology 13, 1761–1770.CrossRefGoogle Scholar
  32. Heikkinen, K. (1994) Organic-matter, iron and nutrient transport and nature of dissolved organic-matter in the drainage basin of a boreal humic river in northern Finland, Science of the Total Environment 152, 81–89.CrossRefGoogle Scholar
  33. Hessen, D.O., Gjessing, E.T., Knulst, J. and Fjeld., E. (1997) TOC fluctuations in OC concentrations in a humic lake as related to catchment acidification, season and climate, Biogeochemistry 36, 139–151.CrossRefGoogle Scholar
  34. Hirsch, R.M., Slack, J.R. and Smith, R.A. (1982) Techniques of trend analysis for monthly water quality data,Water Resources Research 18, 107–121.CrossRefGoogle Scholar
  35. Hogg, E.H., Lieffers, V.J. and Wein, R.W. (1992) Potential carbon losses from peat profiles: effects of temperature, drought cycles and fire, Ecological Applications 2, 298–306.CrossRefGoogle Scholar
  36. Holden, J., Chapman, P.J. and Labadz, J.C. (2004) Artificial drainage of peatlands: hydrological process and wetland restoration, Progress in Physical Geography 28, 95–123.CrossRefGoogle Scholar
  37. Hongve, D. (1999) Production of dissolved organic carbon in forested catchments, Journal of Hydrology 224, 91–99.CrossRefGoogle Scholar
  38. Hongve, D., Riise, G. and Kristiansen, J.F. (2004) Increased colour and organic acid concentrations in Norwegian forest lakes and drinking water – a result of increased precipitation? Aquatic Sciences 66, 231–238.CrossRefGoogle Scholar
  39. Hörnström, E., Ekström, C. and Duraini, M.O. (1984) Effects of pH and different levels of aluminium on lake plankton in the Swedish west coast area, Report Institute of Freshwater Research Drottningholm 61, 115–127.Google Scholar
  40. Hudson, J.J., Dillon, P.J. and Somers, K.M. (2003) Long-term patterns in dissolved organic carbon in boreal lakes: the role of incident radiation, precipitation, air temperature, southern oscillation and acid deposition, Hydrology and Earth System Sciences 7, 390–398.CrossRefGoogle Scholar
  41. Jansson, M., Bergström, A.-K., Blomqvist, P. and Drakare, S. (2000) Allochthonous organic carbon and phytoplankton/bacterioplankton production relationships in lakes, Ecology 81, 3250–3255.CrossRefGoogle Scholar
  42. Jarvis, P. and Linder, S. (2000) Botany: constraints to growth of boreal forests, Nature 405, 904–905.CrossRefGoogle Scholar
  43. Jensen, K.D., Beier, C., Michelsen, A. and Emmett, B.A. (2003) Effects of experimental drought on microbial processes in two temperate heathlands at contrasting water conditions, Applied Soil Ecology 24,165–176.CrossRefGoogle Scholar
  44. Johannessen, M. (1980) Aluminium, a buffer in acidic waters? In Drabløs and A. Tollan (eds.), Ecological impact of acid precipitation, Proc. int. conf. ecol. impact acid precip., Oslo, Norway, pp.222–223.Google Scholar
  45. Jones, R.I. (1992) The influence of humic substances on lacustrine planktonic food chains, Hydrobiologia 229, 73–91.CrossRefGoogle Scholar
  46. Jones, R.I. (1998) Phytoplankton, primary production and nutrient cycling. In D.O. Hessen and L.J. Tranvik (eds.), Aquatic humic substances: ecology and biogeochemistry, Springer-Verlag, Berlin Heidelberg, pp. 145–175.Google Scholar
  47. Jones, R.I. and Arvola, L. (1984) Light penetration and some related characteristics in small forest lakes in southern Finland, Verhandlungen der Internationalen Vereinigung der Limnologie 22, 811–816.Google Scholar
  48. Jonsson, A., Algesten, G., Bergström, A.-K., Bishop, K., Sobek, S., Tranvik, L.J. and Jansson, M. (2006) Integrating aquatic carbon fluxes in a boreal catchment carbon budget, Journal of Hydrology 334, 141–150.CrossRefGoogle Scholar
  49. Kalbitz, K., Solinger, S., Park, J.-H., Michalzik, B. and Matzner, E. (2000) Controls on the dynamics of dissolved organic matter in soils: a review, Soil Science 165, 277–304.CrossRefGoogle Scholar
  50. Kankaala, P., Arvola, L., Tulonen, T. and Ojala, A. (1996) Carbon budget for the pelagic food web of the euphotic zone in a boreal lake (Lake Pääjärvi), Canadian Journal of Fisheries and Aquatic Sciences 53, 1663–1674.CrossRefGoogle Scholar
  51. Kirschbaum, M.U.F. (1995) The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage, Soil Biology and Biochemistry 27, 753–760.CrossRefGoogle Scholar
  52. Köhler, S., Buffam, I., Jonsson, A. and Bishop, K. (2002) Photochemical and microbial processing of streams and soil water dissolved organic matter in a boreal forested catchment in northern Sweden, Aquatic Sciences 64, 269–281.CrossRefGoogle Scholar
  53. Kortelainen, P. and Mannio, J. (1990) Organic acidity in Finnish lakes. In Kauppi, P. Anttila and K. Kenttämies (eds.), Acidification in Finland, Springer-Verlag, Berlin Heidelberg, pp. 849–863.Google Scholar
  54. Kortelainen, P. (1999a) Source of aquatic organic carbon. In Keskitalo and P. Eloranta (eds.), Limnology of humic waters, Backhuys, Leiden. pp. 43–45.Google Scholar
  55. Kortelainen, P. (1999b) Acidity and buffer capacity. In Keskitalo and P. Eloranta (eds.), Limnology of humic waters, Backhuys Publishers, Leiden, The Netherlands, pp. 95–115.Google Scholar
  56. Knorr, W., Prentice, I.C., House, J.I. and Holland, E.A. (2005) Long-term sensitivity of soil carbon to warming, Nature 433, 298–301.CrossRefGoogle Scholar
  57. Krug, E.C. and Frink, C.R. (1983) Acid-rain on acid soils: a new perspective, Science 221, 520–525.CrossRefGoogle Scholar
  58. Lanzante, J.R. (1996) Resistant, robust & non-parametric techniques for the analysis of climate data: theory and examples, including applications to historical radiosonde station data, International Journal of Climatology 16, 1197–1226.CrossRefGoogle Scholar
  59. Laudon, H., Köhler, S. and Buffam, I. (2004) Seasonal dependency in DOC export from seven boreal catchments in northern Sweden, Aquatic Sciences 66, 223–230.CrossRefGoogle Scholar
  60. Lloyd-Hughes, B. and Saunders, M.A. (2002) A drought climatology for Europe, International Journal of Climatology 22, 1571–1592.CrossRefGoogle Scholar
  61. Löfgren, S., Forsius, M. and Andersen, T. (2003) Climate induced water color increase in Nordic lakes and streams due to humus. Nordic Council of Ministers, Brochure, Copenhagen, Denmark, 12 pp.Google Scholar
  62. Lydersen, E. (1998) Humus and acidification. In D.O. Hessen and L.J. Tranvik (eds.), Aquatic humic substances: ecology and biogeochemistry, Springer-Verlag, Berlin Heidelberg, pp. 63–92.Google Scholar
  63. Mitchell, G.N. and McDonald, A.T. (1992) Discoloration of water by peat following induced drought and rainfall simulation, Water Research 26, 321–326.CrossRefGoogle Scholar
  64. Montanerella, L., Jones, R.J.A. and Hiederer, R. (2006) The distribution of peat soil in Europe, Mire and Peat 1, 2–10.Google Scholar
  65. Monteith, D., Stoddard, J.L., Evans, C.D., de Wit, H.A., Forsius, M., Høgåsen, T., Winander, A., Skjelkvåle, B.L., Jeffries, D.S., Vuorenmaa, J., Keller, B., Kopácek, J. and Vesely, J. (2007) Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry, Nature 450, doi:10.1083/natare06316.Google Scholar
  66. Moore, K., (2007) Climate change impacts on the catchment contribution to lake water quantity and quality. Doctoral thesis, Uppsala University, Sweden.Google Scholar
  67. Naden, P.S. and McDonald A.T. (1989)Statistical modelling of water colour in the uplands: the Upper Midd catchment 1979–1987, Environmental Pollution 601, 141–163.CrossRefGoogle Scholar
  68. Neal, C. and Hill, S. (1994) Dissolved inorganic and organic carbon in moorland and forest streams: Plynlimon, Mid-Wales, Journal of Hydrology 153, 231–243.CrossRefGoogle Scholar
  69. Nõges, P., Kägu, M. and Nõges, T. (2007) Role of climate and agricultural practice in determining the matter discharge into large shallow Lake Võrtsjärv, Estonia, Hydrobiologia DOI 10.1007/s10750-006-0504-6.Google Scholar
  70. NORDTEST (2003) Increase in colour and in the amounts of organic matter in surface waters, Position paper 009. NORDTEST, Espoo, Finland, p. 11.Google Scholar
  71. Roulet, N. and Moore, T.R. (2006) Environmental chemistry – browning the waters, Nature 444, 283–284.CrossRefGoogle Scholar
  72. Salonen, K., Arvola, L. and Rask, M. (1984) Autumnal and vernal circulation of small forest lakes in Southern Finland, Verhandlungen der Internationalen Vereinigung der Limnologie 22, 103–107.Google Scholar
  73. Schindler, D.W., Curtis, P.J. Bayley, S.E., Parker, B.R., Beaty, K.G. and Stainton, M.P. (1997) Climate-induced changes in the dissolved organic carbon budgets of boreal lakes, Biogeochemistry 36, 9–28.CrossRefGoogle Scholar
  74. Scott, M.J., Jones, M.N., Woof, C., Simon, B. and Tipping, E. (2001) The molecular properties of humic substances isolated from a UK upland peat system: a temporal investigation, Environment International 27, 449–462.CrossRefGoogle Scholar
  75. Sharp, E.L., Parsons, S.A. and Jefferson, B. (2006) Seasonal variations in natural organic matter and its impact on coagulation in water treatment, Science of the Total Environment 3, 183–194.CrossRefGoogle Scholar
  76. Skjelkvåle, B.L., Stoddard, J.K. and Andersen, T. (2001) Trends in surface water acidification in Europe and North America 1989–1998, Water Soil and Air Pollution 130, 787–792.CrossRefGoogle Scholar
  77. Skjelkvåle, B.L., Stoddard, J.L., Jeffries, D., Tørseth, K., Høgåsen, T., Bowman, J., Mannio, J., Monteith, D., Mosello, R., Rogora, M., Rzychon, D., Vesely, J., Wieting, J., Wilander, A. and Worsztynowicz, A. (2005) Regional scale evidence for improvements in surface water chemistry 1990–2001, Environmental Pollution 137, 165–176.CrossRefGoogle Scholar
  78. Sobek, S., Tranvik, L.J., Prairie, Y.T., Kortelainen, P. and Cole, J.J. (2007) Patterns and regulation of dissolved organic carbon: An analysis of 7,500 widely distributed lakes, Limnology and Oceanography 52, 1208–1219.CrossRefGoogle Scholar
  79. Thurman, E.M. (1985) Organic geochemistry of natural waters, Kluwer Academic Publishers Group, Dordrecht, Germany.Google Scholar
  80. Tilja, M. (2003) Water colour trends in Lake Mälaren, Master-Thesis. Linkopings University, Sweden, p. 20.Google Scholar
  81. Tipping, E. and Hurley, M.A. (1988) A model of solid–solution interactions in acid organic soils, based on the complexation properties of humic substances, Journal of Soil Science 39, 505–519.CrossRefGoogle Scholar
  82. Tipping, E. Woof, C., Rigg, E., Harrison, A.F., Ineson, P., Taylor, K., Benham, D., Poskitt, J., Rowland, A.P., Bol, R. and Harkness, D.D. (1999) Climatic influences on the leaching of dissolved organic matter from upland UK moorland soils, investigated by a field manipulation experiment, Environment International 25, 83–95.CrossRefGoogle Scholar
  83. Tranvik, L.J. (1992) Allochthonous dissolved organic matter as an energy source for pelagic bacteria and the concept of the microbial loop, Hydrobiologia 229, 107–114.CrossRefGoogle Scholar
  84. Tranvik, L.J. and Jansson, M. (2002) Terrestrial export of organic carbon, Nature 415, 861–862.CrossRefGoogle Scholar
  85. Tulonen, T., Salonen, K. and Arvola, L. (1992) Effect of different molecular weight fractions of dissolved organic matter on the growth of bacteria, algae and protozoa from a highly humic lake, Hydrobiologia 229, 239–252.CrossRefGoogle Scholar
  86. Vähätalo, A.V., Salonen, K., Münster, U., Järvinen, M. and Wetzel, R.G. (2003) Photochemical transformation of allochthonous organic matter provides bioavailable nutrients in a humic lake, Archiv für Hydrobiologie 156, 278–314.Google Scholar
  87. Vogt, R.D. and Muniz, I.P. (1997) Soil and stream water chemistry in a pristine and boggy site in mid-Norway, Hydrobiologia 348, 19–38.CrossRefGoogle Scholar
  88. Vuorenmaa, J., Forsius, M. and Mannio, J. (2006) Increasing trends of total organic carbon concentrations in small forest lakes in Finland from 1987 to 2003, Science of the Total Environment 365, 47–65.CrossRefGoogle Scholar
  89. Wallin, M. and Weyhenmeyer, G. (2002) Mälaren has become brownish (in Swedish with English Summary), Sötvatten 2002, pp.10–15.Google Scholar
  90. Watts, C.D., Naden, P.S., Machell, J. and Banks, J. (2001) Long term variation in water colour from Yorkshire catchments, Science of the Total Environment 278, 57–72.CrossRefGoogle Scholar
  91. Weider, R.K. and Yavitt, J.B. (1994) Peatlands and global climate change: insights from comparative studies of sites along a latitudinal gradient, Wetlands 14, 229–238.CrossRefGoogle Scholar
  92. Weyhenmeyer, G.A., Meili, M and Livingstone, D.M. (2004a) Nonlinear temperature response of lake ice breakup, Geophysical Research Letters 31, L07203, doi: 10.1029/2004GL019530.Google Scholar
  93. Weyhenmeyer, G.A., Willén, E. and Sonesten, L. (2004b) Effects of an extreme precipitation event on lake water chemistry and phytoplankton in the Swedish Lake Mälaren, Boreal Environment Research 9, 409–420.Google Scholar
  94. Weyhenmeyer, G.A. (2008) Water chemical changes along a latitudinal gradient in relation to climate and atmospheric deposition, Climatic Change 88, 199–208.CrossRefGoogle Scholar
  95. World Health Organisation (2005) Trihalomethanes in drinking water, WHO/SDE/WSH/05.08/64. World Health Organisation, Geneva. 35 pp.Google Scholar
  96. Worrall, F., Burt, T.P., Jaeben, R.Y., Warburton, J. and Shedden, R. (2002) The release of dissolved organic carbon from upland peat,Hydrological Processes 16, 3487–3504.CrossRefGoogle Scholar
  97. Worrall, F. and Burt, T. (2004) Time series analysis of long-term river dissolved organic carbon records, Hydrological Processes 18, 893–911.CrossRefGoogle Scholar
  98. Worrall, F., Harriman, R., Evans, C.D., Watts, C.D., Adamson, J.K., Neal, C., Tipping, E., Burt, T., Grieve, I., Monteith, D., Naden, P.S., Nisbet, T., Reynolds, B. and Stevens, P. (2004) Trends in dissolved organic carbon in UK rivers and lakes, Biochemistry 30, 369–402.Google Scholar
  99. Worrall, F., Burt, T. and Adamson, J. (2005) Fluxes of dissolved carbon dioxide and inorganic carbon from an upland peat catchment: implications for soil respiration, Biogeochemistry 73, 515–539.CrossRefGoogle Scholar
  100. Worrall, F., Burt, T. and Adamson, A. (2006) Long-term changes in hydrological pathways in an upland peat catchment – recovery from severe drought? Journal of Hydrology 321, 5–20.CrossRefGoogle Scholar
  101. Wright, R.F., Lotse, E. and Semb, A. (1993) RAIN project: results after 8 years of experimentally reduced acid deposition to a whole catchment, Canadian Journal of Fisheries and Aquatic Sciences 50, 258–268.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Eleanor Jennings
    • 1
  • Marko Järvinen
    • 2
  • Norman Allott
    • 3
  • Lauri Arvola
    • 4
  • Karen Moore
    • 5
  • Pam Naden
    • 6
  • Caitriona Nic Aonghusa
    • 7
  • Tiina Nõges
    • 8
  • Gesa A. Weyhenmeyer
    • 9
  1. 1.Department of Applied SciencesDundalk Institute of TechnologyDundalkIreland
  2. 2.SYKE JyväskyläUniversity of JyväskyläJyväskyläFinland
  3. 3.Centre for the EnvironmentTrinity CollegeDublin 2Ireland
  4. 4.University of Helsinki, Lammi Biological StationTrinity CollegeLammiFinland
  5. 5.New York City Department of Environmental ProtectionKingstonUSA
  6. 6.Centre for Ecology and HydrologyWallingfordUK
  7. 7.Marine InstituteGalwayIreland
  8. 8.Estonian University of Life SciencesTartuEstonia
  9. 9.Department of Ecology and Evolution/LimnologyUppsala UniversityUppsalaSweden

Personalised recommendations