Lost Sex pp 47-62 | Cite as

Apomixis: Basics for Non-botanists

  • Peter Van DijkEmail author


The evolutionary questions studied in apomictic plants and parthenogenetic animals are often the same. This chapter gives a basic introduction to apomixis in flowering plants, in order to make the botanical apomixis literature more accessible to non-specialists. The focus is on the differences and similarities with parthenogenetic animals. The following topics are briefly discussed: 1. apomixis should not include vegetative reproduction, 2. apomixis is a modification of sexual reproduction 3. different mechanisms of apomixis, 4. the role of endosperm development 5. causes of apomixis 6. male function in apomicts 7. intra-clonal variation 8. the phylogenetic distribution of apomixis and 9. constraints in the evolution of apomixis. At the end of the chapter, suggestions for further reading are given.


Somatic Embryo Vegetative Reproduction Apomictic Plant Gametophytic Apomixis Facultative Apomixis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Adventitious embryony:

The formation of somatic next to sexual embryos.


asexual reproduction by seed

Apomixis (in plants):

asexual reproduction through seeds


In addition to the normal reduced megagametophyte (n), a second but unreduced (2n) megagametophyte is formed from a non-spore cell (aposporous initial).


Also called selfing. The fusion of egg cells and pollen grains produced by the same individual.

Autonomous apomixis:

The evolution of autonomous endosperm development in some apomictic plants.


a normal reductional meiosis is replaced by a non-reductional division. Two unreduced megaspores (2n) are produced, of which one degenerates and the other develops into an unreduced gametophyte with an unreduced egg cell.

Facultative apomixis:

the production of a mixture of different progeny types in apomictic plants which is possible because apomeiosis and parthenogenesis can be uncoupled.

Gametophytic apomixis:

can consist of diplospory and apospory and is strongly correlated with polyploidy

Nucellar embryony:
seesee Sporophytic apomixis
Pseudogamy, pseudogamous apomixis:

the endosperm develops only after fertilization of the central cell.

Sporophytic apomixis:

Somatic embryos are formed within the sporophytic tissue that surrounds the gametophyte. These cells do not enter a gametophytic phase but remain sporophytically and produce an embryo directly (somatic embryo).


  1. Archetti M (2004) Recombination and loss of complementation: a more than two-fold cost for parthenogenesis. J Evol Biol 17: 1084–1097CrossRefPubMedGoogle Scholar
  2. Asker SE, Jerling L (1992) Apomixis in plants. CRC press, Boca RatonGoogle Scholar
  3. Bayer RJ, Chandler GT (2007) Evolution of polyploid agamic complexes: a case study using the Catipes group of Antennaria, including the A. rosea complex (Asteraceae: Gnaphalieae). In: Hörandl E, Grossniklaus U, van Dijk PJ, Sharbel TF (eds) Apomixis: evolution, mechanisms and perspectives. ARG Gantner Verlag KG, Lichtenstein, pp. 317–336Google Scholar
  4. Bicknell RA, Lambie SC, Butler RC (2003) Quantification of progeny classes in two facultatively apomictic accessions of Hieracium. Hereditas 138: 11–20CrossRefPubMedGoogle Scholar
  5. Bicknell RA, Koltunow AM (2004) Understanding apomixis: recent advances and remaining conundrums. Plant Cell 16: S228–S245CrossRefPubMedGoogle Scholar
  6. Beukeboom LW, Weinzierl RP, Reed KM, Michiels NK (1996) Distribution and origin of chromosomal races in the freshwater planarian Dugesia polychroa (Turbellaria: Tricladida). Hereditas 124: 7–15CrossRefGoogle Scholar
  7. Calderini O, Chang SB, de Jong H, Bustil A, Paolocci F, Arcioni S, de Vries SC, Abma-Henkens MHC, Klein Lankhorst RH, Donnison IS, Pupilli F (2006) Molecular cytogenetics and DNA sequence analysis of an apomixis-linked BAC in Paspalum simplex reveal a non pericentromere location and partial microcolinearity with rice. Theor Appl Genet 112: 1179–1191CrossRefPubMedGoogle Scholar
  8. Carman JG (1997) Asynchronous expression of duplicate genes in angiosperms may cause apomixis, bispory, tetraspory, and polyembryony. Biol J Linn Soc 61: 51–94CrossRefGoogle Scholar
  9. Carman JG (2007) Do duplicate genes cause apomixis? In: Hörandl E, Grossniklaus U, van Dijk PJ, Sharbel TF (eds), Apomixis: evolution, mechanisms and perspectives. ARG Gantner Verlag KG, Lichtenstein, pp. 169–194Google Scholar
  10. Catanach AS, Erasmuson SK, Podivinsky E, Jordan BR, Bicknell R (2006) Deletion mapping of genetic regions associated with apomixis in Hieracium. Proc Natl Acad Sci USA 103: 18650–18655CrossRefPubMedGoogle Scholar
  11. Chaboudez P (1994) Patterns of clonal variation in skeleton weed (Chondrilla juncea), an apomictic species. Austr J Bot 42: 283–295CrossRefGoogle Scholar
  12. Chapman H, Brown J (2001) ‘Thawing’ of ‘frozen’ variation in an adventive, facultatively apomictic, clonal weed. Plant Species Biol 16: 107–118CrossRefGoogle Scholar
  13. Conner JA, Goel S, Gunawan G, Cordonnier-Pratt MM, Johnson VE, Liang C, Wang H, Pratt LH, Mullet JE, Debarry J, Yang L, Bennetzen JL, Klein PE, Ozias-Akins P (2008) Sequence analysis of bacterial artificial chromosome clones from the apospory-specific genomic region of Pennisetum and Cenchrus. Plant Physiol 147: 1396–411CrossRefPubMedGoogle Scholar
  14. Dujardin M, Hanna WW (1989) Developing apomictic pearl millet – characterization of a BC3 plant. J Genet Breed 43: 145–51Google Scholar
  15. Engelstädter J (2008) Constraints on the evolution of asexual reproduction. Bioassays 30: 1138–1150CrossRefGoogle Scholar
  16. Ernst A (1918) Bastadierung als Ursache der Apogamie im Pflanzenreich. Fischer, Jena. (Hybridization as cause of apogamy in the plant kingdom)Google Scholar
  17. Gehring M, Choi Y, Fischer RL (2004) Imprinting and seed development. Plant Cell 16: S203–S213CrossRefPubMedGoogle Scholar
  18. Haig D, Westoby M (1989) Parent-specific gene expression and the triploid endosperm. Am Nat 134: 147–155CrossRefGoogle Scholar
  19. Haig D, Westoby M (1991) Genomic imprinting in endosperm: its effect on seed development in crosses between species, and between different ploidies of the same species, and its implications for the evolution of apomixis. Philos Trans R Soc B 333: 1–13CrossRefGoogle Scholar
  20. Harlan JR, De Wet JMJ (1975) On Ö. Winge and a prayer: the origins of polyploidy. Bot Rev 41: 361–390CrossRefGoogle Scholar
  21. Hebert PDN (1987) Genotypic characteristics of cyclic parthenogens, their obligately asexual derivatives. In: Stearns SC (ed) The evolution of sex and its consequences. Birkhäuser, Basel, pp. 175–195Google Scholar
  22. Holm S, Ghatnekar L, Bengtsson BO (1997) Selfing and outcrossing but no apomixis in two natural populations of diploid Potentilla argentea. J Evol Biol 10: 343–352CrossRefGoogle Scholar
  23. Hörandl E (2006) The complex causality of geographical parthenogenesis. New Phytol 171: 525–538PubMedGoogle Scholar
  24. Hörandl E, Grossniklaus U, van Dijk PJ, Sharbel TF (eds) (2007) Apomixis: evolution, mechanisms and perspectives. ARG Gantner Verlag KG, LichtensteinGoogle Scholar
  25. Huh JH, Bauer MJ, Hsieh T-F, Fischer R (2007) Endosperm gene imprinting and seed development. Curr Opin Genet Dev 17: 480–485CrossRefPubMedGoogle Scholar
  26. Kantama L, Sharbel TF, Schranz ME, Mitchell-Olds T, de Vries S, De Jong JH (2007) Diploid apomicts of the Boechera holboellii complex display large-scale chromosome substitutions and aberrant chromosomes. Proc Natl Acad Sci USA 104: 14026–14031CrossRefPubMedGoogle Scholar
  27. King LM, Schaal BA (1990) Genotypic variation within asexual lineages of Taraxacum officinale. Proc Natl Acad Sci USA 87: 998–1002CrossRefPubMedGoogle Scholar
  28. Koltunow AM, Grossniklaus U (2003) Apomixis: a developmental perspective. Annu Rev Plant Biol 54: 547–574CrossRefPubMedGoogle Scholar
  29. Lively CM (1987) Evidence from a New Zealand snail for the maintenance of sex by parasitism. Nature 328: 519–521CrossRefGoogle Scholar
  30. LeRoux JJ, Wieczorek AM, Wright MG, Tran CT (2007) Super-genotype: global monoclonality defies the odds of nature. PLoS ONE 2: e590CrossRefGoogle Scholar
  31. Matzk F, Meister A, Schubert I (2000) An efficient screen for reproductive pathways using mature seeds of monocots and dicots. Plant J 21: 97–108CrossRefPubMedGoogle Scholar
  32. Mes THM, Kuperus P, Kirschner J, Stepanek J, Storchova H (2002) Detection of genetically divergent clone mates in apomictic dandelions. Mol Ecol 11: 253–265CrossRefPubMedGoogle Scholar
  33. Mogie M (1992) The evolution of asexual reproduction in plants. Chapman and Hall, LondonGoogle Scholar
  34. Moran NA (1992) The evolution of aphid life-cycles. Annu Rev Entomol 37: 321–348CrossRefGoogle Scholar
  35. Naumova TN (1993) Apomixis in angiosperms. Nucellar and integumentary embryony. CRC Press, Boca RatonGoogle Scholar
  36. Naumova TN, Van der Laak J, Osadtchiy J, Matzk F, Kravtchenko A, Bergervoet J, Ramulu KS, Boutilier K (2001) Reproductive development in apomictic populations of Arabis holboellii (Brassicaceae) Sex Plant Reprod 14: 195–200CrossRefGoogle Scholar
  37. Nogler GA (1984a) Genetics of apospory in apomictic Ranunculus auricomus. V. Conclusion. Bot Helv 92: 411–423Google Scholar
  38. Nogler GA (1984b) Gametophytic apomixis. In: Johri BM (ed) Embryology of angiosperms. Springer, Berlin, pp. 475–518Google Scholar
  39. Nogler GA (2006) The lesser-known Mendel: his experiments on Hieracium. Genetics 172: 1–6PubMedGoogle Scholar
  40. Nogler GA (2007) The discovery of parthogenesis: a long journey to the truth. In: Hörandl E, Grossniklaus U, van Dijk PJ, Sharbel TF (eds) Apomixis: evolution, mechanisms and perspectives. ARG Gantner Verlag KG, Lichtenstein, pp. 25–35Google Scholar
  41. Noyes RD, Baker R, Mai B (2007) Mendelian segregation for two-factor apomixis in Erigeron annuus(Asteraceae). Heredity 98: 92–98CrossRefPubMedGoogle Scholar
  42. Noyes RD, Rieseberg LH (2000) Two independent loci control agamospermy (apomixis) in the triploid flowering plant Erigeron annuus. Genetics 155: 379–390PubMedGoogle Scholar
  43. Ozias-Akins P, Van Dijk PJ (2007) Mendelian genetics of apomixis in plants. Annu Rev Genet 41: 509–537CrossRefPubMedGoogle Scholar
  44. Paland S, Colbourne JK, Lynch M (2005) Evolutionary history of contagious asexuality in Daphnia pulex. Evolution 59: 800–813PubMedGoogle Scholar
  45. Paun O, Hörandl E (2006) Evolution of hypervariable microsatellites in apomictic polyploid lineages of Ranunculus carpaticola: directional bias at dinucleotide loci. Genetics 174: 387–398CrossRefPubMedGoogle Scholar
  46. Pichot C, El Maātaoui M, Raddi S, Raddi P (2001) Surrogate mother for endangered Cupressus. Nature 412: 39CrossRefPubMedGoogle Scholar
  47. Pringle P (2007) Day of the dandelion. Simon and Schuster, New YorkGoogle Scholar
  48. Richards AJ (2003) Apomixis in flowering plants: an overview. Philos Trans R Soc B Biol Sci 358: 1085–1093CrossRefGoogle Scholar
  49. Roetman E, Den Nijs JCM, Sterk AA (1988) Distribution and habitat range of diploid, sexual dandelions (Taraxacum section Vulgaria), a Central European flora element in the Netherlands. Acta Bot Neerl 37: 81–94Google Scholar
  50. Rutishauser A (1948) Pseudogamie und Polymorphie in der Gattung Potentilla. Julius Klaus Stiftung für Vererb Forsch 23: 267–424Google Scholar
  51. Sanderson M, Doyle JJA (2001) Sources of error and confidence intervals in estimating the age of angiosperms from rbcL and 18S rDNA data. Am J Bot 88: 1499–1516CrossRefGoogle Scholar
  52. Savidan Y (1980) Chromosomal and embryological analyses in sexual X apomictic hybrids of Panicum maximum Jacq. Theor Appl Genet 57: 153–156CrossRefGoogle Scholar
  53. Savidan Y (2000) Apomixis: genetics and breeding. Plant Breed Rev 18: 13–85Google Scholar
  54. Savidan Y, Carman JG, Dresselhaus T (eds) (2001) The flowering of apomixis; from mechanisms to genetic engineering. Mexico, DF: Cimmyt, IRD European Commission DG VI (FAIR)Google Scholar
  55. Schultz RJ (1967) Gynogenesis and triploidy in the viviparous fish Poeciliopsis. Science 157: 1564–1567CrossRefPubMedGoogle Scholar
  56. Spillane C, Curtis MD, Grossniklaus U. (2004) Apomixis technology development – virgin births in farmers’ fields? Nat Biotechnol 22: 687–691CrossRefPubMedGoogle Scholar
  57. Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, New YorkGoogle Scholar
  58. Van der Hulst RGM, Mes THM, Den Nijs JCM, Bachmann K (2000) Amplified fragment length polymorphism (AFLP) markers reveal that population structure of triploid dandelions (Taraxacum officinale) exhibits both clonality and recombination. Mol Ecol 9: 1–8CrossRefGoogle Scholar
  59. Van Dijk PJ (2003) Ecological and evolutionary opportunities of apomixis: insights from Taraxacumand Chondrilla. Philos Trans R Soc B Biol Sci 358: 1113–1121CrossRefGoogle Scholar
  60. Van Dijk PJ, Vijverberg K (2005) The significance of apomixis in the evolution of the angiosperms: a reappraisal. Regnum Vegetabile 143. Bakker FT, Chatrou LW, Gravendeel B and Pelser PB (eds) Plant species-level systematics: new perspectives on pattern and process. Koeltz Scientific Books, Koeningstein, pp. 101–116Google Scholar
  61. Whitton J, Sears CJ, Baack EJ, Otto SP (2008) The dynamic nature of apomixis in the angiosperms. Int J Plant Sci 169: 169–182CrossRefGoogle Scholar
  62. Wu W, Zheng YL, Chen L, Wei YM, Yan ZH (2005) Genetic diversity among the germplasm resources of the genus Houttuynia Thunb. in China based on RAMP markers. Gen Res Crop Evol 52: 473–482CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Keygene N.V.WageningenThe Netherlands

Personalised recommendations