Non-volcanic Tremor: A Window into the Roots of Fault Zones

  • Justin L. RubinsteinEmail author
  • David R. Shelly
  • William L. Ellsworth
Part of the International Year of Planet Earth book series (IYPE)


The recent discovery of non-volcanic tremor in Japan and the coincidence of tremor with slow-slip in Cascadia have made earth scientists reevaluate our models for the physical processes in subduction zones and on faults in general. Subduction zones have been studied very closely since the discovery of slow-slip and tremor. This has led to the discovery of a number of related phenomena including low frequency earthquakes and very low frequency earthquakes. All of these events fall into what some have called a new class of events that are governed under a different frictional regime than simple brittle failure. While this model is appealing to many, consensus as to exactly what process generates tremor has yet to be reached. Tremor and related events also provide a window into the deep roots of subduction zones, a poorly understood region that is largely devoid of seismicity. Given that such fundamental questions remain about non-volcanic tremor, slow-slip, and the region in which they occur, we expect that this will be a fruitful field for a long time to come.


Tremor ETS Slow earthquakes Slow-slip 



The authors would like to thank Roland Burgmann, Joan Gomberg, Jeanne Hardebeck, Stephanie Prejean, Tetsuzo Seno, John Vidale, and an anonymous reviewer for their thorough reviews. We also thank Chloe Peterson, Doug Christensen, Xyoli Perez-Campos, and Vladimir Kostoglodov for their help in procuring sample tremor data for Fig. 4. For Fig. 4: data from Mexico was part of the MesoAmerican Subduction Experiment (MASE) project; data from Alaska comes from the Broadband Experiment Across Alaskan Ranges (BEAAR) experiment; data from Parkfield comes from the High Resolution Seismic Network (HRSN); data from Cascadia comes from the Cascadia Arrays For Earthscope experiment (CAFE); and the data from Shikoku, Japan is from the High Sensitivity Seismic Network (Hi-Net).


  1. Aguiar, A.C, T.I. Melbourne, and C.W. Scrivner (2009), Moment release rate of Cascadia tremor constrained by GPS, J. Geophys. Res., 114, B00A05, doi:10.1029/2008JB005909.Google Scholar
  2. Aki, K. and P.G. Richards (2002), Quantitative Seismology, 2nd Edition, University Science Books, Sausalito.Google Scholar
  3. Anderson, R.N. (1980), Phase changes and the frequency-magnitude distribution in the upper plane of the deep seimic zone beneath Tohoku, Japan, J. Geophys. Res., 85, 1389–1398.Google Scholar
  4. Audet, P., M.G. Bostock, N.I. Christensen, and S.M. Peacock (2009), Seismic evidence for overpressured subducted oceanic crust and megathrust fault sealing, Nature, 457, 76–78, doi:10.1038/nature07650.Google Scholar
  5. Brenguier, F, M. Campillo, C. Hadziioannou, N.M. Shapiro, R.M. Nadeau, and E. Larose (2008), Postseismic relaxation along the San Andreas fault investigated with continuous seismological observations, Science, 321, 1478–1481.Google Scholar
  6. Brooks, B.A., J.H. Foster, M. Bevis, L.N. Frazer, C.J. Wolfe and M. Behn, (2006), Periodic slow earthquake on the flank of Kilauea volcano, Hawai’I, Earth Planet. Sci. Lett., 246, 207–216.Google Scholar
  7. Brooks, B.A., J. Foster, D. Sandwell, C.J. Wolfe, P. Okubo, M. Poland, and D. Myer (2008), Magmatically triggered slow slip at Kilauea Volcano, Hawaii, Science, 321, 1177, doi:10.1126/science.1159007.Google Scholar
  8. Brown, J.R., G.C. Beroza, and D. R. Shelly (2008), An autocorrelation method to detect low frequency earthquakes within tremor, Geophys. Res. Lett., 35, L16305, doi:10.1029/2008GL034560.Google Scholar
  9. Brown, J.R., G.C. Beroza, S. Ide, K. Ohta, D.R. Shelly, S.Y. Schwartz, W. Rabbel, M. Thorwart, and H. Kao, Deep low-frequency earthquakes in tremor localize to the plate interface in multiple subduction zones, Geophys. Res. Lett., in press.Google Scholar
  10. Brown, K.M., M.D. Tryon, H.R. DeShon, L.M. Dorman, S.Y. Schwartz (2005). Correlated transient fluid pulsing and seismic tremor in the Costa Rica subduction zone, Earth Planet. Sci. Lett., 238, 189–203.Google Scholar
  11. Brudzinski, M.R. and R.M. Allen (2007), Segmentation in episodic tremor and slip all along Cascadia, Geology, 35. 907–910.Google Scholar
  12. Brudzinski, M., E. Cabral-Cano, F. Correa-Mora, C. Demets, and B. Marquez-Azua (2007), Slow slip transients along the Oaxaca subduction segment from 1993 to 2007, Geophys. J. Intl., 171, 523–538, doi:10.1111/j1365-246X.2007.03542.x.Google Scholar
  13. Burlini, L., G. Di Toro, and P. Meredith (2009), Seismic tremor in subduction zones, Rock Phys. Evidence, Geophys. Res. Lett., 36, L08305, doi:10.1029/2009GL037735.Google Scholar
  14. Calvert A. (2004) Seismic reflection imaging of two megathrust shear zones in the northern Cascadia subduction zone, Nature, 428, 163–167.Google Scholar
  15. Capon, J. (1969). Investigation of long-period noise at the large aperture seismic array, J. Geophys. Res., 74, 3182–3194.Google Scholar
  16. Chapman, J. (2008), M.S. Thesis, Central Washington University, Ellensburg, Washington.Google Scholar
  17. Chouet, B. (1988). Resonance of a fluid driven crack: Radiation properties and implications for the source of long-period events and harmonic tremor, J. Geophys. Res., 93, 4375–4400.Google Scholar
  18. Cochran, E.S., J.E. Vidale, and S. Tanaka (2004). Earth tides can trigger shallow thrust fault earthquakes, Science, 306, 1164–1166.Google Scholar
  19. Cochran, E.S. and J.E. Vidale (2007), Comment on tidal synchronicity of the 26 December 2004 Sumatran earthquake and its aftershocks, Geophys. Res. Lett., 34, l04302, doi:10.1029/2006GL028639.Google Scholar
  20. Correa-Mora, F., C. DeMets, E. Cabral-Cano, O. Diaz-Molina, and B. Marquez-Azua (2008), Interplate coupling and transient slip along the subduction interface beneath Oaxaca, Mexico, Geophys. J. Int. 175, 269–290, doi:10.1111/j.1365-246X.2008.03910.xGoogle Scholar
  21. Delahaye, E.J., J. Townend, M.E. Reyners, and G. Rogers (2009), Microseismicity but no tremor accompanying slow slip in the Hikurangi subduction zone, New Zealand, Earth Planet. Sci. Lett., 277, 21–28.Google Scholar
  22. Dragert, H., K. Wang, and T.S. James (2001), A silent slip event on the deeper Cascadia subduction interface. Science, 292, 1525–1528.Google Scholar
  23. Dragert, H., K. Wang and G. Rogers (2004), Geodetic and seismic signatures of episodic tremor and slip in the northern Cascadia subduction zone, Earth Planet. Space, 56, 1143–1150.Google Scholar
  24. Ellsworth, W.L., M.V. Matthews, R.M. Nadeau, S.P. Nishenko, P.A. Reasenber, R.W. Simpson (1999), A Physically-based earthquake recurrence model for estimation of long-trerm earthquake probabilities, U.S. Geol. Surv. Open-File Rept. 99–522.Google Scholar
  25. Filson, J. (1975), Array seismology. Ann. Rev. Earth Plaet. Sci., 3, 157–181.Google Scholar
  26. Fletcher, J.B., P. Spudich, and L. Baker (2006), Rupture propagation of the 2004 Parkfield, California earthquake from observations at the UPSAR, Bull. Seismol. Soc. Am., 96, 129–142.Google Scholar
  27. Ghosh, A., J.E. Vidale, Z. Peng, K.C. Creager, and H. Houston, Complex non-volcanic tremor near Parkfield, California, triggered by the great 2004 Sumatra earthquake, J. Geophys. Res., in press (a).Google Scholar
  28. Ghosh, A., J.E. Vidale, J.R. Sweet, K.C. Creager, and A.G. Wech, Tremor patches in Cascadia revealed by seismic array analysis, Geophys. Res. Lett. (in press (b)).Google Scholar
  29. Gibbons, S.J. and F. Ringdal (2006), The detection of low magnitude seismic events using array-based waveform correlation, Geophys. J. Int., 165, 149–166.Google Scholar
  30. Goldstein, P. and R.J. Archuleta (1987), Array analysis of seismic signals, Geophys. Res. Lett., 14, 13–16.Google Scholar
  31. Gomberg, J., J.L. Rubinstein, Z. Peng, K.C. Creager, J.E. Vidale, and P. Bodin, (2008) Widespread triggering on non-volcanic tremor in California, Science, 319, 713.Google Scholar
  32. Hacker, B.R., Peacock, S.M., Abers, G.A., and Holloway, S., (2003), Subduction Factory 2. Intermediate-depth earthquakes in subducting slabs are linked to metamorphic dehydration reactions. J. Geophys. Res., 108, doi:10.1029/2001JB001129.Google Scholar
  33. Hartzell, S.H. and T.H. Heaton (1983), Inversion of strong ground motion and teleseismic waveform data for the fault rupture history of the 1979 Imperial Valley, California, earthquake, Bull. Seismol. Soc. Am., 73, 1553–1583.Google Scholar
  34. Heki, K, S. Miyazaki, and H. Tsuji (1997), Silent fault slip following an interplate thrust earthquake at the Japan Trench, Nature, 386, 595–598.Google Scholar
  35. Hill, D.P (2008), Dynamic stress, coulomb failure, and remote triggering, Bull. Seismol. Soc. Am., 98, 66–92.Google Scholar
  36. Hiramatsu, Y., T. Watanabe, and K. Obara (2008), Deep low-frequency tremors as a proxy for slip monitoring at plate inteface, Geophys. Res. Lett., 35, L13304, doi:10.1029/2008GL034342.Google Scholar
  37. Hirose, H. and K. Hirahara (2004). A 3-D quasi-static model for a variety of slip behaviors on a subduction fault, PAGEOPH , 161, 2417–2431.Google Scholar
  38. Hirose, H. and K. Obara (2005), Repeating short- and long-term slow slip events with deep tremor activity, around the Bungo channel region, southwest Japan, Earth Planet. Space, 57, 961–972.Google Scholar
  39. Hirose, H. and K. Obara (2006), Short-term slow slip and correlated tremor episodes in the Tokai region, central Japan, Geophys. Res. Lett., 33, L17311, doi:10.1029/2006GL026579.Google Scholar
  40. Hirose, H., K. Hirahara, F. Kimata, N. Fujii, and S. Miyazaki (1999), A slow thrust slip event following the two 1996 Hyuganada earthquakes beneath the Bungo Channel, southwest Japan. Geophys. Res. Lett. 26, 3237–3240.Google Scholar
  41. Hirose, H., H. Kao, and K. Obara (2006). Comparative study of nonvolcanic tremor locations in the Cascadia subduction zone using two different methods, Eos Trans. AGU, 87, Fall Meet. Suppl. Abstract T41A-1533.Google Scholar
  42. Ide, S., D. R. Shelly, and G. C. Beroza (2007a), Mechanism of deep low frequency earthquakes: Further evidence that deep non-volcanic tremor is generated by shear slip on the plate interface, Geophys. Res. Lett., 34, L03308, doi:10.1029/2006GL028890.Google Scholar
  43. Ide, S., G. C. Beroza, D. R. Shelly, and T. Uchide (2007b), A new scaling law for slow earthquakes, Nature, 447, 76–79.Google Scholar
  44. Ide, S. (2008), A Brownian walk model for slow earthquakes, Geophys. Res. Lett., 35, doi:10.1029/2008GL034821.Google Scholar
  45. Ide S., Imanishi K, Yoshida Y., Beroza G.C., and Shelly D.R. (2008), Bridging the gap between seismically and geodetically detected slow earthquakes, Geophys. Res. Lett., 35, L10305, doi:10.1029/2008GL034014.Google Scholar
  46. Iglesias, A., S.K. Singh, A.R. Lowry, M. Santoyo, V. Kostoglodov, K.M. Larson, S.I. Fracno-Sanchez (2004), The silent earthquake of 2002 in the Guerrero seismic gap, Mexico (Mw=7.6): Inversion of slip on the plate interface and some implications, Geofisica Int., 43, 309–317.Google Scholar
  47. Ishii, M., P. M. Shearer, H. Houston, and J. E. Vidale (2005), Extent, duration and speed of the 2004 Sumatra-Andaman earthquake imaged by the Hi-Net array, Nature, 435, doi: 10.1038/nature03675.Google Scholar
  48. Ito Y., K. Obara, K. Shiomi, S. Sekine, and H. Hirose (2007), Slow earthquakes coincident with episodic tremors and slow slip events, Science, 315, 503–506, doi:0.1126/science.1134454.Google Scholar
  49. Johnston, M.J.S., R.D. Borcherdt, A.T. Linde, and M.T. Gladwin (2006), Continuous borehole strain and pore pressure in the near field of the 28 September 2004 M 6.0 Parkfield, California, earthquake: Implications for nucleation, fault response, earthquake prediction, and tremor, Bull. Seismol. Soc. Am., 96, S56–S72.Google Scholar
  50. Julian, B.R. (2000), Period doubling and other nonlinear phenomena in volcanic earthquakes and tremor, J. Volcanol. Geothermal Res., 101, 19–26.Google Scholar
  51. Julian, B. R. (2002), Seismological Detectic of Slab Metamorphism, Science, 296, 1625–1626.Google Scholar
  52. Kao, H. and S-J. Shan (2004), The source-scanning algorithm: Mapping the distribution of seismic sources in time and space. Geophys. J. Intl. 157, 589–594.Google Scholar
  53. Kao, H., S. Shan, H. Dragert, G. Rogers, J. F. Cassidy, and K. Ramachandran (2005), A wide depth distribution of seismic tremors along the northern Cascadia margin, Nature, 436, 841–844.Google Scholar
  54. Kao, H. S-JShan, H. Dragert, G. Rogers, J.F. Cassidy, K. Wang, T.S. James, and K. Ramachandran (2006), Spatial-temporal patterns of seismic tremors in northern Cascadia. J. Geophys. Res., 111, doi:10.1029/2005JB003727.Google Scholar
  55. Kao, H., P. J. Thompson, G. Rogers, H. Dragert, and G. Spence (2007a), Automatic detection and characterization of seismic tremors in northern Cascadia, Geophys. Res. Lett., 34, L16313, doi:10.1029/2007GL030822.Google Scholar
  56. Kao, H., S.-J. Shan, G. Rogers, and H. Dragert (2007b), Migration characteristics of seismic tremors in the northern Cascadia margin, Geophys. Res. Lett., 34, L03304, doi:10.1029/2006GL028430.Google Scholar
  57. Katsumata, A., and N. Kamaya (2003), Low-frequency continuous tremor around the Moho discontinuity away from volcanoes in the southwest Japan, Geophys. Res. Lett. 30, doi:10.1029/2002GL015981.Google Scholar
  58. Kawasaki I., Asai Y., Tamura Y., Sagiya T., Mikami N., Okada Y., Sakata M., and Kasahara M., (1995), The 1992 Sanriku-Oki, Japan, ultra-slow earthquake, J. Phys. Earth, 43, 105–116.Google Scholar
  59. Kawasaki, I., Y.Asal, and Y. Tamura, (2001), Space-time distribution of interplate moment release including slow earthquakes and the seismo-geodetic coupling in the Sanriku-oki region along the Japan trench, Tectonophysics, 330, 267–283.Google Scholar
  60. Kirby, S., K. Wang, and T. Brocher (2002), A possible deep, long-term source for water in the Northern San Andreas Fualt System: A ghost of Cascadia subduction past? Eos Trans. AGU, 83, Fall Meet. Suppl., Abstract S22B-1038.Google Scholar
  61. Kodaira, S., T. Iidaka, A. Kato, J.-O. Park, T. Iwassaki, and Y. Kaneda (2004), High pore fluid pressure may cause silent slip in the Nankai Trough, Science, 304, 1295–1298.Google Scholar
  62. Kostoglodov, V., S.K. Singh, J.A. Santiago, S.I. Franco, K.M. Larson, A.R. Lowry, and R. Bilham (2003), A large silent earthquake in the Guerrero seismic gap, Mexico, Geophys. Res. Lett., 30, doi:10.1029/2003GL017219.Google Scholar
  63. Kuroki, H., H.M. Ito, H. Takayama, and A. Yoshida (2004). 3-D simulation of the occurrence of slow slip events in the Tokai region with a rate- and state-dependent friction law, Bull. Seismol. Soc. Am., 94, 2037–2050.Google Scholar
  64. La Rocca, M., W. McCausland, D. Galluzo, S. Malone, G. Saccorotti, and E. Del Pezzo (2005). Array measurements of deep tremor signals in the Cascadia subduction zone, Geophys. Res. Lett., 32, L21319, doi:10.1029/2005GL023974.Google Scholar
  65. La Rocca, M., D. Galluzzo, S. Malone, W. McCausland, G. Saccorotti, E. Del Pezzo (2008). Testing small-aperture array analysis on well-located earthquakes, and application to the location of deep tremor, Bull. Seismol. Soc. Am., 93, 620–635.Google Scholar
  66. La Rocca, M., K.C. Creager, D. Galluzzo, S. Malone, J.E. Vidale, J.R. Sweet, and A.G. Wech (2009), Cascadia tremor located near plate interface constrained by S minus P wave times, Science, 323, 620–623, doi:10.1126/science.1167112.Google Scholar
  67. Lambert, A., H. Kao, G. Rogers, and N. Courtier (2009), Correlation of tremor activity with tidal stress in the northern Cascadia subduction zone, J. Geophys. Res., 114, B00A08, doi:10.1029/2008JB006038.Google Scholar
  68. Larson, K.M., V. Kostoglodov, S. Miyazaki, and J.A.S. Santiago (2007), The 2006 aseismic slow slip event in Guerrero, Mexico: New results from GPS, Geophys. Res. Lett., 34, L13309, doi:10.1029/2007GL029912.Google Scholar
  69. Liu, Y. and J. R. Rice (2005), Aseismic slip transients emerge spontaneously in three-dimensional rate and state modeling of subduction earthquake sequences, J. Geophys. Res., 110, doi:10.1029/2004JB003424.Google Scholar
  70. Liu, Y. and J. R. Rice (2007), Spontaneous and triggered aseismic deformation transients in a subduction fault model, J. Geophys. Res., 12, B09404, doi:10.1029/2007JB004930.Google Scholar
  71. Liu, Y., J.R. Rice, and K. M. Larson (2007), Seismicity variations associated with aseismic transients in Guerrero, Mexico, 1995–2006, Earth Planet. Sci. Lett., 262, 493–504.Google Scholar
  72. Lowry, A.R. (2006). Resonant slow fault slip in subduction zones forced by climatic load stress, Nature, 442, 802–805.Google Scholar
  73. Lowry, A.R., K.M. Larson, V. Kostoglodov, and R. Bilham (2001), Transient fault slip in Guerrero, Southern Mexico, Geophys. Res. Lett., 28, 3753–3756.Google Scholar
  74. Matsubara, M., K. Obara, and K. Kashara (2009), High-VP/VS zone accompanying non-volcanic tremors and slow-slip events beneath southwestern Japan, Tectonophysics, 472, 6–17, doi:10.1016/j.tecto.2008.06.013.Google Scholar
  75. Mazzoti, S. and J. Adams (2004), Variability of near-term probability for the next great earthquake on the Cascadia subduction zone, Bull. Seismol. Soc. Am., 94, 1954–1959.Google Scholar
  76. McCausland, W., S. Malone and D. Johnson (2005). Temporal and spatial occurrence of deep non-volcanic tremor: From Washington to Northern California, Geophys. Res. Lett. 32, doi:10.1029/2005GL024349.Google Scholar
  77. McCaffrey R, Wallace L.M., and Beavan J (2008), Slow slip and frictional transition at low temperature at the Hikurangi subduction zone, Nat. Geosci., 1, 316–320.Google Scholar
  78. McCaffrey, R. (2009), Time-dependent inversion of three-component continuous GPS for steady and transient sources in northern Cascadia, Geophys. Res. Lett., 36, L07304, doi:10.1029/2008GL036784.Google Scholar
  79. McNutt S.R. (2005), Volcanic Seismology, Ann. Rev. Earth Plaet. Sci., 32:461–491, doi:10.1146/ Scholar
  80. Meade, B.J. and J.P. Loveless (2009), Predicting the geodetic signature of MW>=8 slow slip events, Geophys. Res. Lett., 36, L01306, doi:10.1029/2008GL03634.Google Scholar
  81. Miller, M. M., Melbourne, T., Johnson, D. J. & Sumner, W. Q. (2002) Periodic slow earthquakes from the Cascadia subduction zone. Science 295, 2423.Google Scholar
  82. Miyazawa, M. and E. E. Brodsky (2008), Deep low-frequency tremor that correlates with passing surface waves, J. Geophys. Res., 113, B01307, doi:10.1029/2006JB004890.Google Scholar
  83. Miyazawa, M., E.E. Brodsky, and J. Mori (2008), Learning from dynamic triggering of low-frequency tremor in subduction zones, Earth Planets Space, 60, e17–e20.Google Scholar
  84. Miyazawa, M. and J. Mori, (2005), Detection of triggered deep low-frequency events from the 20032005 Tokachi-oki earthquake, Geophys. Res. Lett., 32, doi:10.1029/2005GL022539.Google Scholar
  85. Miyazawa, M. and J. Mori (2006), Evidence suggesting fluid flow beneath Japan due to periodic seismic triggering from the 2004 Sumatra-Andaman earthquake, Geophys. Res. Lett., 33, doi:10.1029/2005GL025087.Google Scholar
  86. Montgomery-Brown, E.K., P. Segall, and A. Miklius (2009), Kilauea slow slip events: Identification, source inversions, and relation to seismicity, J. Geophys. Res., 114, B00A03, doi:10.1029/2008JB006074.Google Scholar
  87. Nadeau, R., A. Thomas, and R. Burgmann (2008), Tremor-tide correlations at Parkfield, CA, Eos Trans. AGU, 89, Fall Meet Suppl., Abstract U33A-0054.Google Scholar
  88. Nadeau, R.M. and A. Guilhem (2009), Nonvolcanic tremor evolution and the San Simeon and Parkfield, California, Earthquakes, Science, 325, 191–193, doi:10.1126/science.1174155.Google Scholar
  89. Nadeau, R.M. and T. V. McEvilly (1999), Fault slip rates at depth from recurrence intervals of repeating microearthquakes, Science 285, 718–721, DOI: 10.1126/science.285.5428.718.Google Scholar
  90. Nadeau, R.M., A. Michelini, R.A. Uhrhammer, D. Dolenc, and T.V. McEvilly (2004). Detailed kinematics, structure, and recurrence of micro-seismicity in the SAFOD target region, Geophys. Res. Lett., 31, L12S08, doi:10.1029/2003GL019409.Google Scholar
  91. Nadeau, R. M. & Dolenc, D. (2005) Nonvolcanic tremors deep beneath the San Andreas fault. Science 307, 389; published online 9 December 2004 (10.1126/science.1107142).Google Scholar
  92. Nakata, R., N. Suda, and H. Tsuruoka, (2008), Non-volcanic tremor resulting from the combined effect of Earth tides and slow slip events, Nat. Geosci., 1, 676–678, doi:10.1038/ngeo288.Google Scholar
  93. Nakatani, M., and C. H. Scholz (2004), Frictional healing of quartz gouge under hydrothermal conditions: 1. Experimental evidence for solution transfer healing mechanism, J. Geophys. Res., 109 B07201, doi:10,1029/2001JB001522.Google Scholar
  94. Nugraha, A.D. and J. Mori (2006). Three-dimensional velocity structure in the Bungo Channel and the Shikoku area, Japan, and its relationship to low-frequency earthquakes, Geophys. Res. Lett., 33, L24307, doi:10.1029/2006GL028479.Google Scholar
  95. Obara, K. (2002), Nonvolcanic deep tremor associated with subduction in southwest Japan. Science, 296, 1679–1681.Google Scholar
  96. Obara, K. (2003), Time sequence of deep low-frequency tremors in the Southwest Japan Subduction Zone: Triggering phenomena and periodic activity, Chigaku Zasshi (J. Geogr.), 112, 837–849 (in Japanese).Google Scholar
  97. Obara, K., H. Hirose, F. Yamamizu, and K. Kasahara (2004), Episodic slow slip events accompanied by non-volcanic tremors in southwest Japan subduction zone. Geophys. Res. Lett. 31, doi:10.1029/2004GL020848.Google Scholar
  98. Obara, K., K. Kasahara, S. Hori, and Y. Okada (2005), A densely distributed highsensitivity seismograph network in Japan: Hi-net by National Research Institute for Earth Science and Disaster Prevention. Rev. Sci. Instrum. 76, doi:10.1063/1.1854197.Google Scholar
  99. Ohmi, S. and K. Obara (2002), Deep low-frequency earthquakes beneath the focal region of the Mw 6.7 2000 Western Tottori earthquake, Geophys. Res. Lett., 29, doi:10.1029/2001GL014469.Google Scholar
  100. Ohmi, S., I. Hirose, and J. Mori (2004), Deep low-frequency earthquakes near the downward extension of the seismogenic fault of the 2000 Western Tottori earthquake, Earth Planets Space, 56, 1185–1189.Google Scholar
  101. Ohta, Y., J. T. Freymueller, S. Hreinsdóttir, and H. Suito, (2006), A large slow slip event and the depth of the seismogenic zone in the south central Alaska subduction zone, Earth Planet. Sci. Lett., 247, 108–116.Google Scholar
  102. Ohta, K., and S. Ide (2008), A precise hypocenter determination method using network correlation coefficients and its application to deep low frequency earthquakes, Earth Planets. Space, 60, 877–882.Google Scholar
  103. Ozawa, S., M. Murakami, M. Kaidzu, T Tada, T. Sagiya, Y. Hatanaka, H. Yarai, and T. Nishimura (2002), Detection and monitoring of ongoing aseismic slip in the Tokai region, central Japan, Science, 298, 1009–1012.Google Scholar
  104. Ozawa, S., S. Miyazaki, Y. Hatanaka, T. Imakiire, M. Kaidzu, M. Murakami (2003), Characteristic silent earthquakes in the eastern part of the Boso peninsula, Central Japan, Geophys. Res. Lett., 30, doi:10.1029/2002GL016665.Google Scholar
  105. Payero, J.S., V. Kostoglodov, N. Shapiro, T. Mikumo, A. Iglesia, X. Perez-Campos, R.W. Clayton (2008), Nonvolcanic tremor observed in the Mexican subduction zone, Geophys. Res. Lett., 35, L07305, doi:10.1029/2007GL032877.Google Scholar
  106. Peacock, S.M. (2009), Thermal and metamorphic environment of subduction zone episodic tremor and slip, J. Geophys. Res., 114, B00A07, doi:10.1029/2008JB005978.Google Scholar
  107. Peacock, S. M. & Wang, K. (1999) Seismic consequences of warm versus cool subduction metamorphism: Examples from southwest and northeast Japan. Science 286, 937–939.Google Scholar
  108. Peng, Z. and K. Chao (2008), Non-volcanic tremor beneath the Central Range in Taiwan triggered by the 2001 MW7.8 Kunlun earthquake, Geophys. J. Int., 175, 825–829, doi:10.1111/j.1365-246X.2008.03886.x.Google Scholar
  109. Peng, Z., J.E. Vidale, K.C. Creager, J.L. Rubinstein, J. Gomberg, and P. Bodin (2008), Strong tremor near Parkfield, CA excited by the 2002 Denali Fault earthquake, Geophys. Res. Lett., 35, L23305, doi:10.1029/2008GL036080.Google Scholar
  110. Peng, Z., J.E. Vidale, A.G. Wech, R.M. Nadeau, and K.C Creager (2009), Remote triggering of tremor along the San Andreas Fault in central California, J. Geophys. Res., 114, B00A06, doi:10.1029/2008JB006049.Google Scholar
  111. Peterson, C.L. and D.H. Christensen (2009). Possible relationship between nonvolcanic tremor and the 1998–2001 slow slip event, south central Alaska, J. Geophys. Res., 114, B06302, doi:10.1029/2008JB006096.Google Scholar
  112. Poupinet, G., W. L. Ellsworth, and J. Fréchet (1984), Monitoring velocity variations in the crust using earthquake doublets: An application to the Calaveras Fault, California, J. Geophys. Res., 89, 5719–5731.Google Scholar
  113. Reyners, M. and S. Bannister (2007), Earthquakes triggered by slow slip at the plate interface in the Hikurangi subduction zone, New Zealand, Geophys. Res. Lett., 34, L14305, doi:10.1029/2007GL030511.Google Scholar
  114. Rogers, G. and H. Dragert (2003), Episodic tremor and slip on the Cascadia subduction zone: The chatter of silent slip. Science, 300, 1942–1943.Google Scholar
  115. Rogers, G. (2007), Episodic Tremor and Slip in Northern Cascadia – Going Back in Time, paper presented at the 2007 Seismol. Soc. Am. Annual Meeting, Waikoloa, Hawaii., 11–13 April.Google Scholar
  116. Royle G.T, Calvert A.J., Kao H (2006), Observations of non-volcanic tremor during the northern Cascadia slow slip event in February 2002, Geophys. Res. Lett., 33, L18313, doi10.1029/2006GL027316.Google Scholar
  117. Rubin, A.M., D. Gillard, and J.-L. Got (1999), Streaks of microearthquakes along creeping faults. Nature, 400, 635–641.Google Scholar
  118. Rubin, A.M. and P. Segall (2007), Episodic slow-slip transients and rate-and-data friction, Eos Trans. AGU, 88, Fall Meet. Suppl., Abstract T21A-0374.Google Scholar
  119. Rubin, A.M. (2008), Episodic slow slip events and rate-and-state friction, J. Geophys. Res., 113, B11414, doi:10.1029/2008JB005642.Google Scholar
  120. Rubinstein, J.L., J.E. Vidale, J. Gomberg, P. Bodin, K.C. Creager and S.D. Malone (2007), Non-volcanic tremor driven by large transient shear stresses, Nature, 448, doi:10.1038/nature06017, 579–582.Google Scholar
  121. Rubinstein, J.L., M. La Rocca, J.E. Vidale, K.C. Creager, and A.G. Wech (2008), Tidal modulation of non-volcanic tremor, Science, 319, 186–189.Google Scholar
  122. Rubinstein, J.L., J. Gomberg, J.E. Vidale, A.G. Wech, H. Kao, K.C. Creager, and G. Rogers (2009), Seismic wave triggering of nonvolcanic tremor, episodic tremor and slip, and earthquakes on Vancouver Island, J. Geophys. Res., 114, B00A01, doi:10.1029/2008JB005875.Google Scholar
  123. Schaff, D. P., G. C. Beroza, and B. E. Shaw (1998), Postseismic response of repeating aftershocks, Geophys. Res. Lett., 25, 4549–4552.Google Scholar
  124. Schaff, D.P., G.H.R. Bokelmann, W.L. Ellsworth, E. Zanzerkia, F. Waldhauser, and G.C. Beroza (2004), Optimizing correlation techniques for improved earthquake location, Bull. Seism. Soc. Am., 94, 705–721, doi:10.1785/0120020238.Google Scholar
  125. Schwartz, S.Y., J.I. Walter, T.H. Dixon, K.C. Psencik, M. Protti, V. Gonzalez, M. Thorwart, and W. Rabbel (2008), Slow slip and tremor detected at the northern Costa Rica seismogenic zone, Eos Trans. AGU, 89, Fall. Meet. Suppl., Abstract U31B-06.Google Scholar
  126. Schwartz, S.Y. and J.M. Rokosky (2007), Slow slip events and seismic tremor at circum-pacific subduction zones, Rev. Geophys. 45, RG3004, doi:10.1029/2006RG000208.Google Scholar
  127. Segall, P. and A.M. Rubin (2007), Dilatency stabilization of frictional sliding as a mechanism for slow slip events, Eos Trans. AGU, 88, Fall Meet. Suppl., Abstract T13F-08.Google Scholar
  128. Segall, P., E.K. Desmarais, D. Shelly, A. Miklius, and P. Cervelli (2006), Earthquakes triggered by silent slip events on Kilauea volcano, Hawaii, Nature, 442, 71–74.Google Scholar
  129. Seno, T. and T. Yamasaki (2003), Low-frequency tremors, intraslab and interplate earthquakes in Southwest Japan – from a viewpoint of slab dehydration. Geophys. Res. Lett. 30, doi:10.1029/2003GL018349.Google Scholar
  130. Seno, T. (2005), Variation of downdip limit of the seismogenic zone near the Japanese islands, Implications for the serpentinization mechanism of the forearc mantle wedge, Earth Planet. Sci. Lett., 231, 249–262.Google Scholar
  131. Shearer, P.M. (1999), Introduction to Seismology, Cambridge University Press, Cambridge.Google Scholar
  132. Shelly, D.R., Possible deep fault slip preceding the 2004 Parkfield earthquake, inferred from detailed observations of tectonic tremor, Geophys. Res. Lett. (in press).Google Scholar
  133. Shelly, D. R., G. C. Beroza, S. Ide, and S. Nakamula (2006), Low-frequency earthquakes in Shikoku, Japan and their relationship to episodic tremor and slip. Nature 442, 188–191.Google Scholar
  134. Shelly, D. R., Beroza, G. C. & Ide, S. (2007a), Non-volcanic tremor and low frequency earthquake swarms. Nature, 446, 305–307.Google Scholar
  135. Shelly, D.R., G.C. Beroza, and S. Ide (2007b), Complex evolution of transient slip derived from precise tremor locations in western Shikoku, Japan. Geochem. Geophys. Geosyst., 8, Q10014, doi:10.1029/2007GC001640.Google Scholar
  136. Shelly, D.R., W.L. Ellsworth, T. Ryberg, C. Haberland, G.S. Fuis, J. Murphy, R.M. Nadeau, and R. Burgmann (2009), Precise location of San Andreas Fault tremors near Cholame, California using seismometer clusters: Slip on the deep extension of the fault?, Geophys. Res. Lett., 36, L01303, doi:10.1029/2008GL036367.Google Scholar
  137. Shen, Z-K., Q. Wang, R. Burgmann, Y. Wan, and J. Ning (2005). Pole-tide modulation of slow slip events at circum-Pacific subduction zones. Bull. Seismol. Soc. Am., 95, 2009–2015.Google Scholar
  138. Shibazaki, B., and Y. Iio (2003), On the physical mechanism of silent slip events along the deeper part of the seismogenic zone, Geophys. Res. Lett., 30(9), 1489, doi:10.1029/2003GL017047.Google Scholar
  139. Shibazaki B, Shimamoto T (2007) Modelling of short-interval silent slip events in deeper subduction interfaces considering the frictional properties at the unstable-stable transition regime. Geophys. J. Intl. 171, 191–205.Google Scholar
  140. Shimamoto, T., (1986). Transition between frictional slip and ductile flow for Halite shear zones at room temperature, Science, 231, 711–714.Google Scholar
  141. Smith, E.F. and J. Gomberg, A search in strainmeter data for slow slip associated with triggered and ambient tremor near Parkfield, California, J. Geophys. Res., in press.Google Scholar
  142. Song, T.-R.A, D.V. Helmberger, M.R. Brudzinski, R.W. Clayton, P. Davis, X. Perez-Campos, S.K. Singh (2009), Subducting slab ultra-slow velocity layer coincident with silent earthquakes in southern Mexico, Science, 324, 502–505, doi:10.1126/science.1167595.Google Scholar
  143. Spudich, P. and E. Cranswick (1984), Direct observation of rupture propagation during the 1979 Imperial Valley earthquake using a short baseline accelerometer array, Bull. Seismol. Soc. Am., 74, 2083–2114.Google Scholar
  144. Suda, N.R., R. Nakata, and T. Kusumi, An automatic monitoring system for non-volcanic tremors in southwest Japan, J. Geophys. Res., in press.Google Scholar
  145. Sweet, J., K. Creager, J. Vidale, A. Ghosh, M. Nichols, T. Pratt, and A. Wech (2008), Low Frequency Earthquakes in Cascadia, paper presented at 2008 IRIS Workshop, Stevenson Washington, 9 June 2008.Google Scholar
  146. Szeliga, W., T.I. Melbourne, M.M. Miller, and V.M. Santillan (2004), Southern Cascadia episodic slow earthquakes, Geophys. Res. Lett., L16602, doi:10.1029/2004GL020824.Google Scholar
  147. Szeliga, W., T. Melbourne, M. Santillan, and M. Miller (2008), GPS constraints on 34 slow slip events within the Cascadia subduction zone, 1997–2005, J. Geophys. Res., 113, B04404, doi:10.1029/2007JB004948.Google Scholar
  148. Tanaka, S., M. Ohtake, and H. Sato (2002), Evidence for tidal triggering of earthquakes as revealed from statistical analysis of global data, J. Geophys. Res., 107(B10), 221, doi:10.1029/2001JB001577.Google Scholar
  149. Uchida, N., T. Matsuzawa, W. L. Ellsworth, K. Imanishi, T. Okada, and A. Hasegawa (2007), Source parameters of a M4.8 and its accompanying repeating earthquakes off Kamaishi, NE Japan - implications for the hierarchical structure of asperities and earthquake cycle, Geophys. Res. Lett., 34, doi:10.1029/2007GL031263.Google Scholar
  150. Vidale, J.E. (1988). Finite-difference travel time calculation, Bull. Seismol. Soc. Am., 78, 2062–2076.Google Scholar
  151. Vidale, J.E., D.C. Agnew, M.J.S. Johnston, and D.H. Oppenheimer (1998). Absence of earthquake correlation with Earth tides: An indication of high preseismic fault stress rate, J. Geophys. Res., 103, 7247–7263.Google Scholar
  152. Voisin, C., J-R. Grasso, E. Larose, and F. Renard (2008), Evolution of seismic signals and slip patterns along subduction zones: Insights from a friction lab scale experiment, Geophys. Res. Lett., 35, L08302, doi:10.1029/2008GL033356.Google Scholar
  153. Waldhauser, F., W. L. Ellsworth, D. P. Schaff, and A. Cole (2004), Streaks, multiplets, and holes: High-resolution spatio-temporal behavior of Parkfield seismicity. Geophys. Res. Lett., 31, doi:10.1029/2004GL02069.Google Scholar
  154. Wang, Z., D. Zhao, O.P. Mishra, and A. Yamada (2006), Structural heterogeneity and its implications for the low frequency tremors in Southwest Japan, Earth. Planet. Sci. Lett., 251, 66–78.Google Scholar
  155. Wang, K., H. Dragert, H. Kao, and E Roeloffs (2008), Characterizing an “uncharacteristic” ETS event in northern Cascadia, Geophys. Res. Lett., 35, L15303, doi:10.1029/2008GL034415.Google Scholar
  156. Watanabe T, Hiramatsu Y, and Obara K (2007) Scaling relationship between the duration and the amplitude of non-volcanic deep low-frequency tremors, Geophys. Res. Lett., 34, L07305, doi:10.1029/2007GL029391.Google Scholar
  157. Wech A. G., K. C. Creager (2007), Cascadia tremor polarization evidence for plate interface slip, Geophys. Res. Lett., 34, L22306, doi:10.1029/2007GL031167.Google Scholar
  158. Wech, A.G. and K.C. Creager (2008), Automated detection and location of Cascadia tremor, Geophys. Res. Lett., 35, L20302, doi:10.1029/2008GL035458.Google Scholar
  159. Wilcock, W.S.D. (2001). Tidal triggering of microearthquakes on the Juan de Fuca Ridge, Geophys. Res. Lett., 28, 3999–4002.Google Scholar
  160. Wolfe, C.J., B.A. Brooks, J.H. Foster, and P.G. Okubo (2007), Microearthquake streaks and seismicity triggered by slow ear-thquakes on the mobile south flank of Kilauea Volcano, Hawai’I, Geophys. Res. Lett., 34, L23306, doi:10.1029/2007GL031625.Google Scholar
  161. Yamasaki T. and T. Seno (2003), Double seismic zone and dehydration embrittlement, J. Geophys. Res., 108, doi:10.1029/2002JB001918.Google Scholar
  162. Yoshida, S. and N. Kato (2003). Episodic aseismic slip in a two-degree-of-freedom block-spring model, Geophys. Res. Lett., 30, doi:10.1029/2003GL017439.Google Scholar
  163. Yoshida, A., K. Hososno, T. Tsukakoshi, A. Kobayashi, H. Takayama, and S. Wiemer (2006), Change in seismic activity in the Tokai region related to weakening and strengthening of the interplate coupling, Tectonophysics, 417, 17–31.Google Scholar
  164. Yoshioka, S., T. Mikumo, V. Kostoglodov, K.M. Larson, A.R. Lowry, and S.K. Singh (2004), Interplate coupling and a recent aseismic slow slip event in the Guerrero seismic gap of the Mexican subduction zone, as deduced from GPS data inversion using a Bayesian information criterio, Phys. Earth Planet. Interior., 146, 513–530.Google Scholar
  165. Yoshioka, S., M. Toda, and J. Nakajima (2008), Regionality of deep low-frequency earthquakes associated with subduction of the Philippine Sea plate along the Nankai Trough, southwest Japan, Earth Planet. Sci. Lett., 272, 189–198.Google Scholar
  166. Zhang, H. & Thurber, C. H. (2003) Double-difference tomography: The method and its application to the Hayward fault, California. Bull. Seismol. Soc. Am., 93, 1875–1889.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Justin L. Rubinstein
    • 1
    Email author
  • David R. Shelly
    • 1
  • William L. Ellsworth
    • 1
  1. 1.United States Geological Survey;Menlo ParkUSA

Personalised recommendations