The Little Ice Age in Southern South America: Proxy and Model Based Evidence

Part of the Developments in Paleoenvironmental Research book series (DPER, volume 14)


In this chapter climatic changes over southern South America during the last millennium with focus on the period of the Little Ice Age (LIA 1550–1800 AD) are investigated. Results presented are based on proxy and modelling evidence. Proxy studies include a variety of different sites, ranging from geomorphological, lacustrine, pollen to tree ring reconstructions. These different sources of evidence are combined into a multi-proxy network. Based on this network, spatio-temporal climatic changes in southern South America are assessed for the last millennium. A climate model simulation of the last millennium is used to investigate the influence of external forcing parameters, such as solar, volcanic and greenhouse gases on the local climate in southern South America. To compare proxy-based results and the output of the global climate model on a common basis, conceptual and quantitative downscaling and upscaling models are established. Based on these methodological approaches both reconstruction methods indicate a period of wetter conditions in south-eastern South America during the period of the LIA. Investigating the driving mechanisms for hydrological changes during the LIA, large-scale atmospheric circulation changes of the Southern Hemispheric Westerlies (SHWs) over southern South America are indicated in modelling results. Changes of the SHWs during the LIA also fit into the spatial pattern indicated by different proxies with wetter conditions and cooler temperatures in south-eastern South America accompanied with drier and warmer conditions to the north.


Climate modelling Downscaling Little Ice Age Southern South America Southern Westerlies 


  1. Ariztegui D, Bösch P, Davaud E (2007) Dominant ENSO frequencies during the Little Ice Age in Northern Patagonia: The varved record of proglacial Lago Frías, Argentinia. Quat Int 161:46–55CrossRefGoogle Scholar
  2. Bard E, Raisbeck G, Yiou F, Jouzel J (2000) Solar irradiance during the last 1200 years based on cosmogenic nuclides. Tellus 52B:985–992Google Scholar
  3. Beck C, Grieser J, Rudolf B (2004) A new monthly precipitation climatology for the global land areas for the period 1951 to 2000. Tech. Rep. 18, Global Precipitation Climatology Centre c/o Deutscher WetterdienstGoogle Scholar
  4. Boës X, Fagel N (2008) Relationships between southern Chilean varved lake sediments, precipitation and ENSO for the last 600 years. J Paleolimnol 39:237–252CrossRefGoogle Scholar
  5. Boninsegna JA (1988) Santiago de Chile Winter Rainfall since 1220 as being Reconstructed by Tree Rings. Quat South Am Antarct Peninsula 6:67–87Google Scholar
  6. Boninsegna JA (1995) South American dendrochronological records. In: Bradley RS, Jones PD (eds) Climate since A.D. 1500. Routledge, LondonGoogle Scholar
  7. Bradley RS (1985) Quaternary Paleoclimatology. Methods of Paleoclimatic Reconstruction, Allen & Unwin, LondonGoogle Scholar
  8. Cerveny RS (1998) Present Climates of South America. In: Hobbs JE, Lindesay JA, Bridgeman HA (eds) Climates of the Southern Continents – Present, Past and Future. John Wiley & Sons Ltd, ChichesterGoogle Scholar
  9. Clapperton CM (1983) The Glaciation of the Andes. Quart Sci Rev 2:83–155CrossRefGoogle Scholar
  10. Crowley TJ (2000) Causes of Climate Change over the past 1000 years. Science 289:270–277CrossRefGoogle Scholar
  11. Daley A (1998) The little Ice Age; was it big enough to be global., 20.05.2007
  12. De Melo MLD, Marengo JA (2008) The influence of changes in orbital parameters over South American climate using the CPTEC AGCM: Simulation of climate during the mid Holocene. Holocene 18:501–516CrossRefGoogle Scholar
  13. Eddy JA (1976) The maunder minimum. Science 192:1189–1202CrossRefGoogle Scholar
  14. Etheridge D, Steele LP, Langenfelds RL, Freandcey RJ, Barnola JM, Morgan VI (1996) Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. J Geophys Res 101:4115–4128CrossRefGoogle Scholar
  15. Baruth B, Endlicher W, Hoppe P (1998) Climate and desertification processes in Patagonia. Bamberger Geographische Schriften 15:307–320Google Scholar
  16. Fagan B (2000) The Little Ice Age: How Climate Made History 1300–1850. Basic Books, New YorkGoogle Scholar
  17. Galloway RW, Markgraf V, Bradbury JP (1988) Dating shorelines of lakes in Patagonia, Argentina. J South Am Earth Sci 1:195–198CrossRefGoogle Scholar
  18. Glaser R (2001) Klimageschichte Mitteleuropas. 1000 Jahre Wetter, Klima, Katastrophen. Wissenschaftliche Buchgesellschaft, DarmstadtGoogle Scholar
  19. Glasser NF, Hambrey MJ, Aniya M (2001) An advance of Soler Glacier, North Patagonian Icefield, at c. AD 1222–1342. Holocene 12(1):113–120CrossRefGoogle Scholar
  20. Glasser NF, Harrison S, Winchester V, Aniya M (2004) Late Pleistocene and Holocene palaeoclimate and glacier fluctuations in Patagonia. Glob Planet Change 43:79–101CrossRefGoogle Scholar
  21. Grove JM (1988) The little Ice Age. Methuen, LondonCrossRefGoogle Scholar
  22. Haberzettl T, Fey M, Lücke A, Maidana N, Mayr C, Ohlendorf C, Schäbitz F, Schleser GH, Wille M, Zolitschka B (2005) Climatically induced lake level changes during the last two millennia as reflected in sediments of Laguna Potrok Aike, southern Patagonia (Santa Cruz, Argentina). J Paleolimnol 33:283–302CrossRefGoogle Scholar
  23. Harrison S, Winchester V (1998) Historical fluctuations of the Gualas and Reicher Glaciers, North Patagonian Icefield, Chile. Holocene 8(4):481–485CrossRefGoogle Scholar
  24. Harrison S, Glasser N, Winchester V, Haresign E, Warren C, Jansson K (2006) A glacial lake outburst flood associated with recent mountain glacier retreat, Patagonian Andes. Holocene 16(4):611–620CrossRefGoogle Scholar
  25. Houghton J (1994) Globale Erwärmung. Fakten, Gefahren und Lösungswege. Springer-Verlag, BerlinGoogle Scholar
  26. Jones PD, Osborn TJ, Briffa KR (2001) The evolution of climate over the last millennium. Science 292:662–667CrossRefGoogle Scholar
  27. Joussaume S (1996) Klima- Gestern, Heute, Morgen. Springer Verlag, BerlinGoogle Scholar
  28. Kirchner I, Stenchikov GL, Graf H-F, Robock A, Antuña C (1999) Climate model simulation of winter warming and summer cooling following the 1991 Mount Pinatubo volcanic eruption. J Geophys Res 104(D16):19,039–19,055CrossRefGoogle Scholar
  29. Kistler R, Kalnay E, Collins W, Saha S, White G, Woollen J, Chelliah M, Ebisuzaki W, Kanamitsu M, Kousky V, van den Dool H, Jenne R, Fiorino M (2001) The NCEP/NCAR 50-year reanalysis: Monthly means CD ROM and documentation. Bull Am Meteorol Soc 82:247–267CrossRefGoogle Scholar
  30. Koch J, Kilian R (2005) “Little Ice Age” glacier fluctuations, Gran Campo Nevado, southernmost Chile. Holocene 15(1):20–28CrossRefGoogle Scholar
  31. Lamb HH (1965) The Early Medival Warm Epoch And Its Sequel. Palaeogeogr Palaeoclimatol Palaeoecol 1:13–37CrossRefGoogle Scholar
  32. Lamb HH (1970) Volcanic Activity And Climate. Palaeogeogr Palaeoclimatol Palaeoecol 10:203–230CrossRefGoogle Scholar
  33. Lamb HH (1984) Some Studies of the Little Ice Age of Recent Centuries and its Great Storms. In: Mörner N-A, Karlén W (eds) Climatic changes on a yearly to millenial basis. D. Reidel, DordrechtGoogle Scholar
  34. Lamy F, Hebbeln D, Röhl U, Wefer G (2001) Holocene rainfall variability in southern Chile: A marine record of latitudinal shifts of the Southern Westerlies. Earth Planet Sci Lett 185: 369–382CrossRefGoogle Scholar
  35. Lara A, Villalba R (1993) A 3620-year temperature record from Fitzroya cupressoides tree ring in Southern South America. Science 260:1104–1106CrossRefGoogle Scholar
  36. Lean J, Beer J, Bradley R (1995) Reconstruction of solar irradiance since 1610: Implications of climate change. Geophys Res Lett 22(23):3195–3198CrossRefGoogle Scholar
  37. Legutke S, Voss R (1999) The Hamburg atmosphere-ocean coupled model ECHO -G. Technical Report 18, German Climate Computer Center (DKRZ), (available online
  38. Lund C, Lynch-Stieglitz J, Curry WB (2006) Gulf Stream weakened in ‘Little Ice Age’. Nature 444:601–604CrossRefGoogle Scholar
  39. Luterbacher JE, Xoplaki D, Dietrich R, Rickli J, Jacobeit C, Beck D, Gyalistras C, Schmutz H Wanner (2002) Reconstruction of sea level pressure fields over the Eastern North Atlantic and Europe back to 1500. Clim Dyn 18:545–561Google Scholar
  40. Markgraf V (1993) Paleoenvironments and paleoclimates in Tierra del Fuego and southernmost Patagonia, South America. Palaeogeogr Palaeoclimatol Palaeoecol. 102:53–68CrossRefGoogle Scholar
  41. Mayr C, Fey M, Haberzettl T, Janssen S, Lücke A, Maidana N, Ohlendorf C, Schäbitz F, Schleser GH, Struck U, Wille M, Zolitschka B (2005) Palaeoenvironmental changes in southern Patagonia during the last millennium recorded in lake sediments from Laguna Azul (Argentina), Palaeogeogr Palaeoclimatol Palaeoecol 228:203–227CrossRefGoogle Scholar
  42. Mayr C, Wille M, Haberzettl T, Fey M, Janssen S, Lücke A, Ohlendorf C, Oliva G, Schäbitz F, Schleser GH, Zolitschka B (2007) Holocene variability of the Southern Hemisphere westerlies in Argentiniean Patagonia (52°S). Quat Sci Rev 26:579–584CrossRefGoogle Scholar
  43. Mercer JH (1965) Glacier Variations In Southern Patagonia. Geogr Rev 55:390–413CrossRefGoogle Scholar
  44. Mercer JH (1970) Variations of some Patagonian glaciers since the Late glacial: II. Am J Sci 269:1–25CrossRefGoogle Scholar
  45. Mercer JH (1976) Glacial history of southernmost South America. Quat Res 6:125–166CrossRefGoogle Scholar
  46. Meyer I, Wagner S (2008) The Little Ice Age in southern Patagonia: Comparison between paleoecological reconstructions and downscaled model output of a GCM. PAGES news 16(2):12–13Google Scholar
  47. Moy CM, Dunbar RB, Moreno PI, Francois J-P, Villa-Martínez R, Mucciarone DM, Guilderson TP, Garreaud RD (2008) Isotopic evidence for hydrologic change related to the weterlies in SW Patagonia, Chile, during the last millennium. Quat Sci Rev 27:1335–1349CrossRefGoogle Scholar
  48. Nunez MN, Solman SA, Cabre MF (2008) Regional climate change experiments over southern South America. II: Climate change scenarios in the late twenty-first century. Clim Dyn. doi:10.1007/s00382-008-0449-8Google Scholar
  49. Piovano EL, Ariztegui D, Damatto Moreiras S (2002) Recent environmental changes in Laguna Mar Chiquita (central Argentina): A sedimentary model for a highly variable saline lake. Sedimentology 49:1371–1384CrossRefGoogle Scholar
  50. Robock A (2000) Volcanic eruptions and climate. Rev Geophys 38:191–219CrossRefGoogle Scholar
  51. Roeckner E, Arpe K, Bengtsson L, Christoph M, Claussen M, Dümenil L, Esch M, Giorgetta M, Schlese U, Schulzweida U (1996) The atmospheric general circulation model ECHAM4: Model description and simulation of present-day climate. Technical Report 218, Max Planck Institut für MeteorologieGoogle Scholar
  52. Solman SA, Nunez MN, Cabre MF (2007) Regional climate change experiments over southern South America. I: Present climate. Clim Dyn 30:533–552CrossRefGoogle Scholar
  53. Stine S, Stine M (1990) A record from Lake Cardiel of climate change in southern South America. Nature 345:705–708CrossRefGoogle Scholar
  54. Thompson LG, Mosley-Thompson E, Dansgaard W, Grootes PM (1986) The little Ice Age as recordet in the Stratigraphy of the tropical Quelccaya. Science 234:361–364CrossRefGoogle Scholar
  55. Villalba R (1990) Climatic Fluctuations in Northern Patagonia during the Last 1000 Years as Inferred from Tree-Ring Records. Quat Res 34:346–360CrossRefGoogle Scholar
  56. Villalba R (1994) Tree-Ring and Glacial Evidence for the Medival Warm Epoch and the Little Ice Age in Southern South America. Clim Change 26:183–197CrossRefGoogle Scholar
  57. Villalba R, Lara A, Bonninsegna JA, Masiokas M, Delgano M, Aravena J, Roig FA, Schmelter A, Wolodarsky A, Ripalta A (2003) Large-Skale Temperature Changes Across The Southern Andes: 20th-Century Variations In The Context Of The Past 400 Years. Clim Change 59:177–232CrossRefGoogle Scholar
  58. Vimeux F, Gallaire R, Bony S, Hoffmann G, Chiang JCH (2005) What are the climate controls on δD in precipitation in the Zongo Valley (Bolivia)? Implications for the Illimani ice core interpretation. Earth Planet Sci Lett 240:205–220CrossRefGoogle Scholar
  59. von Storch H, Zorita E, Jones JM, Dmitriev Y, González, F, Tett SFB (2004) Reconstructing past climate from noisy data, Science 306:679–682CrossRefGoogle Scholar
  60. Vuille M, Werner M (2005) Stable isotopes in precipitation recording South American summer monsoon and ENSO variability: Observations and model results. Clim Dyn 25:401–413CrossRefGoogle Scholar
  61. Wagner S, Widmann M, Jones J, Haberzettl T, Lücke A, Mayr C, Ohlendorf C, Schäbitz F, Zolitschka B (2007) Transient simulations, empirical reconstructions and forcing mechanisms for the Mid-Holocene hydrological climate in Southern Patagonia. Clim Dyn 29:333–355CrossRefGoogle Scholar
  62. Weischet W (1996) Regionale Klimatologie. Teil 1. Die NeueWelt: Amerika, Neuseeland, Australien: Teubner Studienbücher der Geographie, StuttgartGoogle Scholar
  63. Wolf J, Maier-Reimer E, S. Legutke (1997) The Hamburg Primitive Equation Model HOPE. Technical Report 18, German Climate Computer Center (DKRZ)Google Scholar
  64. Zolitschka B, Schäbitz F, Lücke A, Corbella H, Ercolano B, Fey M, Haberzettl T, Janssen S, Maidana N, Mayr C, Ohlendorf C, Oliva G, Paez MM, Schleser GH, Soto J, Tiberi P, Wille M (2006) Crater lakes of the Pali Aike Volcanic Field as key sites for paleoclimatic and paleoecological reconstructions in southern Patagonia, Argentina. J South Am Earth Sci 21:294–309CrossRefGoogle Scholar
  65. Zorita E, von Storch H, González-Rouco F, Cubasch U, Luterbacher J, Legutke S, Fischer-Bruns I, Schlese U (2004) Climate evolution in the last five centuries simulated by an atmosphere-ocean model: Global temperatures, the North Atlantic Oscillation and the Late Maunder Minimum. Meteorologische Zeitschrift 13(4):271–289CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Marum – Centre for Marine Environmental SciencesUniversity of BremenBremenGermany
  2. 2.Institute for Coastal Research, GKSS Research CenterGeesthachtGermany

Personalised recommendations