Comprehensive Analysis of Dewetting Profiles to Quantify Hydrodynamic Slip

  • Oliver Bäumchen
  • Renate Fetzer
  • Andreas Münch
  • Barbara Wagner
  • Karin Jacobs
Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 15)


Hydrodynamic slip of Newtonian liquids is a new phenomenon, the origin of which is not yet clarified. There are various direct and indirect techniques to measure slippage. Here we describe a method to characterize the influence of slippage on the shape of rims surrounding growing holes in thin polymer films. Atomic force microscopy is used to study the shape of the rim; by analyzing its profile and applying an appropriate lubrication model we are able to determine the slip length for polystyrene films. In the experiments we study polymer films below the entanglement length that dewet from hydrophobized (silanized) surfaces. We show that the slip length at the solid/liquid interface increases with increasing viscosity. The correlation between viscosity and slip length is dependent on the type of silanization. This indicates a link between the molecular mechanism of the interaction of polymer chains and silane molecules under flow conditions that we will discuss in detail.


Contact Angle Capillary Number Slip Length Hole Radius Hole Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tretheway DC, Meinhart CD (2002) Phys Fluids 14:9–12 CrossRefGoogle Scholar
  2. 2.
    Tretheway DC, Meinhart CD (2004) Phys Fluids 16:1509–1515 CrossRefGoogle Scholar
  3. 3.
    Lumma D, Best A, Gansen A, Feuillebois F, Rädler JO, Vinogradova OI (2003) Phys Rev E 67:056313 CrossRefGoogle Scholar
  4. 4.
    Pit R, Hervet H, Léger L (2000) Phys Rev Lett 85:980–983 CrossRefGoogle Scholar
  5. 5.
    Schmatko T, Hervet H, Léger L (2005) Phys Rev Lett 94:244501 CrossRefGoogle Scholar
  6. 6.
    Craig VSJ, Neto C, Williams DRM (2001) Phys Rev Lett 87:054504 CrossRefGoogle Scholar
  7. 7.
    Vinogradova OI, Yakubov GE (2003) Langmuir 19:1227–1234 CrossRefGoogle Scholar
  8. 8.
    Cottin-Bizonne C, Jurine S, Baudry J, Crassous J, Restagno F, Charlaix E (2002) Eur Phys J E 9:47–53 Google Scholar
  9. 9.
    Zhu Y, Granick S (2002) Langmuir 18:10058–10063 CrossRefGoogle Scholar
  10. 10.
    Neto C, Evans DR, Bonaccurso E, Butt H-J, Craig VSJ (2005) Rep Prog Phys 68:2859–2897 CrossRefGoogle Scholar
  11. 11.
    Lauga E, Brenner MP, Stone HA (2007) Microfluidics: The no-slip boundary condition. In: Tropea C, Yarin AL, Foss JF (eds) Springer handbook of experimental fluid mechanics. Springer, Berlin, Heidelberg, New York Google Scholar
  12. 12.
    Bocquet L, Barrat J-L (2007) Soft Matter 3:685–693 CrossRefGoogle Scholar
  13. 13.
    Ruckenstein E, Jain RK (1974) J Chem Soc Faraday Trans II 70:132–147 CrossRefGoogle Scholar
  14. 14.
    Seemann R, Herminghaus S, Jacobs K (2001) Phys Rev Lett 86:5534–5537 CrossRefGoogle Scholar
  15. 15.
    Reiter G (1992) Phys Rev Lett 68:75–78 CrossRefMathSciNetGoogle Scholar
  16. 16.
    Seemann R, Herminghaus S, Jacobs K (2001) Phys Rev Lett 87:196101 CrossRefGoogle Scholar
  17. 17.
    Fetzer R, Münch A, Wagner B, Rauscher M, Jacobs K (2007) Langmuir 23:10559–10566 CrossRefGoogle Scholar
  18. 18.
    Wasserman SR, Tao Y-T, Whitesides GM (1989) Langmuir 5:1074–1087 CrossRefGoogle Scholar
  19. 19.
    Good RJ, Girifalco LA (1960) J Phys Chem 64:561–565 CrossRefGoogle Scholar
  20. 20.
    Brochard-Wyart F, De Gennes P-G, Hervet H, Redon C (1994) Langmuir 10:1566–1572 CrossRefGoogle Scholar
  21. 21.
    Münch A, Wagner BA, Witelski TP (2005) J Eng Math 53:359–383 zbMATHCrossRefGoogle Scholar
  22. 22.
    Fetzer R, Jacobs K, Münch A, Wagner B, Witelski TP (2005) Phys Rev Lett 95:127801 CrossRefGoogle Scholar
  23. 23.
    Fetzer R, Rauscher M, Münch A, Wagner BA, Jacobs K (2006) Europhys Lett 75:638–644 CrossRefGoogle Scholar
  24. 24.
    Fetzer R, Jacobs K (2007) Langmuir 23:11617–11622 CrossRefGoogle Scholar
  25. 25.
    Migler KB, Hervet H, Léger L (1993) Phys Rev Lett 70:287–290 CrossRefGoogle Scholar
  26. 26.
    Hervet H, Léger L (2003) C R Phys 4:241–249 CrossRefGoogle Scholar
  27. 27.
    Léger L (2003) J Phys: Condens Matter 15:S19–S29 CrossRefGoogle Scholar
  28. 28.
    Pastorino C, Binder K, Kreer T, Müller M (2006) J Chem Phys 124:064902 CrossRefGoogle Scholar
  29. 29.
    Magerl A (2007) Personal communication Google Scholar
  30. 30.
    Cottin-Bizonne C, Barrat J-L, Boquet L, Charlaix E (2003) Nat Mater 2:237–240 CrossRefGoogle Scholar
  31. 31.
    Cho JJ, Law BM, Rieutord F (2004) Phys Rev Lett 92:166102 CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2009

Authors and Affiliations

  • Oliver Bäumchen
    • 1
  • Renate Fetzer
    • 1
  • Andreas Münch
    • 2
  • Barbara Wagner
    • 3
  • Karin Jacobs
    • 1
  1. 1.Department of Experimental PhysicsSaarland UniversitySaarbrueckenGermany
  2. 2.School of Mathematical SciencesUniversity of NottinghamNottinghamUK
  3. 3.Weierstrass Institute for Applied Analysis and Stochastics (WIAS)BerlinGermany

Personalised recommendations