Energy Computation for Exponentially Correlated Four-Body Wavefunctions

Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 19)

Abstract

Formulas are presented for efficient computation of the energy of four-body quantum-mechanical Coulomb systems with wavefunctions consisting of fully correlated exponentials premultiplied by arbitrary integer powers of the interparticle distances. Using the interparticle distances as coordinates, the potential energy is easily expressed in terms of basic integrals involving these wavefunctions. All the contributions to the kinetic energy are also expressible using the same basic integrals, but it is useful to organize the computations in ways that take advantage of the relations between integrals and that illustrate the underlying symmetry of the formulation. The utility of the formulation presented here is illustrated by an “ultra-compact” computation of the ground state of the Li atom.

Keywords

Few-body problems Correlated wavefunctions Li atom 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. M. Delves, T. Kalotas, Aust. J. Phys. 21, 1 (1968)CrossRefGoogle Scholar
  2. 2.
    A. J. Thakkar, V. H. Smith, Jr., Phys. Rev. A 15, 1 (1977)CrossRefGoogle Scholar
  3. 3.
    E. A. Hylleraas, Z. Phys. 54, 347 (1929)CrossRefGoogle Scholar
  4. 4.
    F. E. Harris, V. H. Smith, Jr., J. Phys. Chem. A 109, 11413 (2005)CrossRefGoogle Scholar
  5. 5.
    F. E. Harris, V. H. Smith, Jr., Adv. Quantum Chem. 48, 407 (2005)CrossRefGoogle Scholar
  6. 6.
    F. E. Harris, V. H. Smith, Jr., in Symmetry, Spectroscopy and SCHUR, ed. by R. C. King, M. Bylicki, J. Karwowski (Nicolaus Copernicus University Press, Torun, 2006), pp. 127–137Google Scholar
  7. 7.
    T. K. Rebane, V. S. Zotev, O. N. Yusupov, Zh. Eksp. Teor. Fiz. 110, 55 (1996) [JETP 83, 28 (1996)]Google Scholar
  8. 8.
    V. S. Zotev, T. K. Rebane, Opt. Spekt. 85, 935 (1998) [Opt. Spect. 85, 856 (1998)]Google Scholar
  9. 9.
    F. E. Harris, A. M. Frolov, V. H. Smith, Jr., Int. J. Quantum Chem. 100, 1086 (2004)CrossRefGoogle Scholar
  10. 10.
    F. E. Harris, Phys. Rev. A 79, 032517 (2009)CrossRefGoogle Scholar
  11. 11.
    T. K. Rebane, Opt. Spekt. 75, 945 (1993) [Opt. Spect. 75, 557 (1993)]Google Scholar
  12. 12.
    F. E. Harris, A. M. Frolov, V. H. Smith, Jr., J. Chem. Phys. 119, 8833 (2003)CrossRefGoogle Scholar
  13. 13.
    D. M. Fromm, R. N. Hill, Phys. Rev. A 36, 1013 (1987)CrossRefGoogle Scholar
  14. 14.
    F. E. Harris, Phys. Rev. A 55, 1820 (1997)CrossRefGoogle Scholar
  15. 15.
    E. Remiddi, Phys. Rev. A 44, 5492 (1991)CrossRefGoogle Scholar
  16. 16.
    K. Pachucki, M. Puchalski, E. Remiddi, Phys. Rev. A 70, 032502 (2004)CrossRefGoogle Scholar
  17. 17.
    S. Larsson, Phys. Rev. 169, 49 (1968)CrossRefGoogle Scholar
  18. 18.
    T. Koga, H. Tatewaki, A. J. Thakkar, Phys. Rev. A 47, 4510 (1993)CrossRefGoogle Scholar
  19. 19.
    M. Puchalski, K. Pachucki, Phys. Rev. A 73, 022503 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of UtahSalt Lake CityUSA
  2. 2.Quantum Theory ProjectUniversity of FloridaGainesvilleUSA

Personalised recommendations