The Dissociation Catastrophe in Fluctuating-Charge Models and its Implications for the Concept of Atomic Electronegativity


We have recently developed the QTPIE (charge transfer with polarization current equilibration) fluctuating-charge model, a new model with correct dissociation behavior for nonequilibrium geometries. The correct asymptotics originally came at the price of representing the solution in terms of charge-transfer variables instead of atomic charges. However, we have found an exact reformulation of fluctuating-charge models in terms of atomic charges again, which is made possible by the symmetries of classical electrostatics. We show how this leads to the distinction between two types of atomic electronegativities in our model. While one is a intrinsic property of individual atoms, the other takes into account the local electrical surroundings. This distinction could resolve some confusion surrounding the concept of electronegativity as to whether it is an intrinsic property of elements, or otherwise. We also use the QTPIE model to create a three-site water model and discuss simple applications.


Fluctuating charges Charge equilibration Electronegativity equalization Chemical hardness Force fields Molecular models Water models 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. J. Giese, D. M. York, J. Chem. Phys. 120, 9903–9906 (2004)CrossRefGoogle Scholar
  2. 2.
    S. J. Stuart, B. J. Berne, J. Phys. Chem. 100, 11934–11943 (1996)CrossRefGoogle Scholar
  3. 3.
    A. Warshel, M. Kato, A. V. Pisliakov, J. Chem. Theory Comput. 3, 2034–2045 (2007)CrossRefGoogle Scholar
  4. 4.
    A. Warshel, M. Levitt, J. Mol. Bio. 103, 227–249 (1976)CrossRefGoogle Scholar
  5. 5.
    P. Ren, J. W. Ponder, J. Phys. Chem. B 107, 5933–5947 (2003)CrossRefGoogle Scholar
  6. 6.
    G. Lamoureux, B. Roux, J. Chem. Phys. 119, 3025–3039 (2003)CrossRefGoogle Scholar
  7. 7.
    H. Yu, W. F. van Gunsteren, Comput. Phys. Commun. 172, 69–85 (2005)CrossRefGoogle Scholar
  8. 8.
    S. Patel, C. L. Brooks, III, Molec. Simul. 32, 231–249 (2006)CrossRefGoogle Scholar
  9. 9.
    S. W. Rick, S. J. Stuart, in Reviews in Computational Chemistry, ed. by K. B. Lipkowitz, D. B. Boyd (Wiley, New York, 2002), Vol. 18Google Scholar
  10. 10.
    F. H. Streitz, J. W. Mintmire, Phys. Rev. B 50, 11996 (1994)CrossRefGoogle Scholar
  11. 11.
    U. W. Schmitt, G. A. Voth, J. Chem. Phys. 111, 9361–9381 (1999)CrossRefGoogle Scholar
  12. 12.
    S. M. Valone, S. R. Atlas, Phil. Mag. 86, 2683–2711 (2006)CrossRefGoogle Scholar
  13. 13.
    A. Warshel, Annu. Rev. Biophys. Biomol. Struct. 32, 425–443 (2003)CrossRefGoogle Scholar
  14. 14.
    M. S. Gordon, L. Slipchenko, H. Li, J. H. Jensen, D. C. Spellmeyer, R. Wheeler, in Annual Reports in Computational Chemistry, ed. by D. C. Spellmeyer, R. A. Wheeler (Elsevier, Amsterdam, 2007), Vol. 3Google Scholar
  15. 15.
    N. Gresh, G. A. Cisneros, T. A. Darden, J. P. Piquemal, J. Chem. Theory Comput. 3, 1960–1986 (2007)CrossRefGoogle Scholar
  16. 16.
    A. K. Rappé, W. A. Goddard, III, J. Phys. Chem. 95, 3358–3363 (1991)CrossRefGoogle Scholar
  17. 17.
    A. K. Rappé, C. J. Casewit, K. S. Colwell, W. A. Goddard, III, W. M. Skiff, J. Am. Chem. Soc. 114, 10024–10035 (1992)CrossRefGoogle Scholar
  18. 18.
    W. J. Mortier, S. K. Ghosh, S. Shankar, J. Am. Chem. Soc. 108, 4315–4320 (1986)CrossRefGoogle Scholar
  19. 19.
    W. J. Mortier, K. Vangenechten, J. Gasteiger, J. Am. Chem. Soc. 107, 829–835 (1985)CrossRefGoogle Scholar
  20. 20.
    A. C. T. Van Duin, S. Dasgupta, F. Lorant, W. A. Goddard, III, J. Phys. Chem. A 105, 9396–9409 (2001)CrossRefGoogle Scholar
  21. 21.
    S. W. Rick, B. J. Berne, J. Am. Chem. Soc. 118, 672–679 (1996)CrossRefGoogle Scholar
  22. 22.
    S. W. Rick, S. J. Stuart, B. J. Berne, J. Chem. Phys. 101, 6141–6156 (1994)CrossRefGoogle Scholar
  23. 23.
    L. Pauling, The Nature of the Chemical Bond, 2nd edition (Cornell University Press, Ithaca, NY, 1945)Google Scholar
  24. 24.
    H. O. Pritchard, H. A. Skinner, Chem. Rev. 55, 745–786 (1955)CrossRefGoogle Scholar
  25. 25.
    R. P. Iczkowski, J. L. Margrave, J. Am. Chem. Soc. 83, 3547–3551 (1961)CrossRefGoogle Scholar
  26. 26.
    J. Hinze, H. H. Jaffé, J. Am. Chem. Soc. 84, 540–546 (1962)CrossRefGoogle Scholar
  27. 27.
    J. Hinze, M. A. Whitehead, H. H. Jaffé, J. Am. Chem. Soc. 85, 148–154 (1963)CrossRefGoogle Scholar
  28. 28.
    J. Hinze, H. H. Jaffé, J. Phys. Chem. 67, 1501–1506 (1963)CrossRefGoogle Scholar
  29. 29.
    R. G. Parr, R. A. Donnelly, M. Levy, W. E. Palke, J. Chem. Phys.68, 3801–3807 (1978)CrossRefGoogle Scholar
  30. 30.
    R. G. Pearson, J. Am. Chem. Soc. 85, 3533–3539 (1963)CrossRefGoogle Scholar
  31. 31.
    R. G. Pearson, Science 151, 172–177 (1966)CrossRefGoogle Scholar
  32. 32.
    R. G. Pearson, J. Songstad, J. Am. Chem. Soc. 89, 1827–1836 (1967)CrossRefGoogle Scholar
  33. 33.
    R. G. Parr, R. G. Pearson, J. Am. Chem. Soc. 105, 7512–7516 (1983)CrossRefGoogle Scholar
  34. 34.
    R. T. Sanderson, Science 114, 670–672 (1951)CrossRefGoogle Scholar
  35. 35.
    D. M. York, W. Yang, J. Chem. Phys. 104, 159–172 (1996)CrossRefGoogle Scholar
  36. 36.
    S. Patel, C. L. Brooks, III, J. Comp. Chem. 25, 1–16 (2004)CrossRefGoogle Scholar
  37. 37.
    S. Patel, A. D. Mackerell, Jr, C. L. Brooks, III, J. Comp. Chem. 25, 1504–1514 (2004)CrossRefGoogle Scholar
  38. 38.
    J. Chen, T. J. Martinez, Chem. Phys. Lett. 438, 315–320 (2007)CrossRefGoogle Scholar
  39. 39.
    R. S. Mulliken, J. Chem. Phys. 2, 782–793 (1934)CrossRefGoogle Scholar
  40. 40.
    R. W. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules, 1st edition (Oxford, United Kingdom, 1989)Google Scholar
  41. 41.
    G. Del Re, J. Chem. Soc. 4031–4040 (1958)Google Scholar
  42. 42.
    J. Gasteiger, M. Marsili, Tetrahedron 36, 3219–3228 (1980)CrossRefGoogle Scholar
  43. 43.
    J. Chen, D. Hundertmark, T. J. Martínez, J. Chem. Phys. 129, 214113 (2008)CrossRefGoogle Scholar
  44. 44.
    J. L. Banks, G. A. Kaminski, R. Zhou, D. T. Mainz, B. J. Berne, R. A. Friesner, J. Chem. Phys. 110, 741 (1999)CrossRefGoogle Scholar
  45. 45.
    R. Chelli, P. Procacci, R. Righini, S. Califano, J. Chem. Phys. 111, 8569–8575 (1999)CrossRefGoogle Scholar
  46. 46.
    R. A. Nistor, J. G. Polihronov, M. H. Müser, N. J. Mosey, J. Chem. Phys. 125, 094108 (2006)CrossRefGoogle Scholar
  47. 47.
    L. Pauling, J. Am. Chem. Soc. 54, 3570–3582 (1932)CrossRefGoogle Scholar
  48. 48.
    D. R. Lide, CRC Handbook of Chemistry and Physics, 87 edition (CRC Press: Boca Raton, FL, 2006)Google Scholar
  49. 49.
    A. V. Gubskaya, P. G. Kusalik, J. Chem. Phys. 117, 5290–5302 (2002)CrossRefGoogle Scholar
  50. 50.
    H.-J. Werner, F. R. Manby, P. J. Knowles, J. Chem. Phys. 118, 8149–8160 (2003)CrossRefGoogle Scholar
  51. 51.
    T. H. Dunning, Jr., J. Chem. Phys. 90, 1007–1023 (1989)CrossRefGoogle Scholar
  52. 52.
    J. Nocedal, S. J. Wright, Numerical Optimization (Springer, New York, 2002)Google Scholar
  53. 53.
    N. Rosen, Phys. Rev. 38, 255–276 (1931)CrossRefGoogle Scholar
  54. 54.
    P. Bultinck, R. Carbo-Dorca, Chem. Phys. Lett. 364, 357–362 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Chemistry, Center for Advanced Theory and Molecular Simulation, Frederick SeitzMaterials Research LaboratoryThe Beckman Institute, University of IllinoisUrbanaUSA
  2. 2.Department of ChemistryStanford UniversityStanfordUSA

Personalised recommendations