Nanotechnology and Quasicrystals: From Self-Assembly to Photonic Applications

  • R. Lifshitz
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

After providing a concise overview on quasicrystals and their discovery more than a quarter of a century ago, I consider the unexpected interplay between nano-technology and quasiperiodic crystals. Of particular relevance are efforts to fabricate artificial functional micro- or nanostructures, as well as efforts to control the self-assembly of nanostructures, where current knowledge about the possibility of having long-range order without periodicity can provide significant advantages. I discuss examples of systems ranging from artificial metamaterials for photonic applications, through self-assembled soft matter, to surface waves and optically-induced nonlinear photonic quasicrystals.


quasicrystals quasiperiodic crystals nanostructures self-assembly soft matter meta-materials nonlinear photonic crystals surface waves Faraday waves 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kepler, J. Harmonices Mundi, (Frankfurt, 1619) Book II. English translation by E. J. Aiton, A. M. Duncan, and J.V. Field, The Harmony of the World, American Philosophical Society (1997)Google Scholar
  2. 2.
    Penrose, R.: The role of aesthetics in pure and applied mathematical research, Bull. Inst. Math. Appl. 10, 266 (1974)Google Scholar
  3. 3.
    Gardner, M.: Extraordinary nonperiodic tiling that enriches the theory of tiles. Sci. Am. 236, 110–119 (1977)CrossRefGoogle Scholar
  4. 4.
    Haüy, R.-J.: Essai d'une Théorie sur la Structure des Crystaux. Gogué & Née, Paris (1784)Google Scholar
  5. 5.
    Kuhn, T. S.: The Structure of Scientific Revolutions. University of Chicago Press, Chicago, IL (1962)Google Scholar
  6. 6.
    Cahn, J. W.: Epilogue. In: Proceedings of the 5th International Conference on Quasicrystals, World Scientific, Singapore (1996)Google Scholar
  7. 7.
    Shechtman, D., Blech, I., Gratias, D., and Cahn, J.W.: Metallic phase with long-ranged orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951–1953 (1984)CrossRefGoogle Scholar
  8. 8.
    Hargittai, I.: Quasicrystal discovery: A personal account. Chem. Intell. 3 (4), 25 (1997)Google Scholar
  9. 9.
    Bancel, P.A., Heiney, P.A., Horn, P.M., and Steinhardt, P.J.: Comment on a Paper by Linus Pauling. Proc. Natl. Acad. Sci. USA. 86, 8600–8601 (1989)CrossRefGoogle Scholar
  10. 10.
    Pauling, L.: Apparent icosahedral symmetry is due to directed multiple twinning of cubic crystals. Nature. 317, 512–514 (1985)CrossRefGoogle Scholar
  11. 11.
    International Union of Crystallography, Report of the executive committee for 1991. Acta Cryst. A 48, 922 (1992)CrossRefGoogle Scholar
  12. 12.
    Anderson, P.W. Basic notions of condensed matter physics. Addison Wesley, Reading, MA, (1997)Google Scholar
  13. 13.
    Sethna, J.P.: Entropy, Order Parameters, and Complexity. Clarendon Press, Oxford (2006)Google Scholar
  14. 14.
    Senechal, M.: Mapping the aperiodic landscape, 1982 – 2007. Phil. Mag. (2008) in pressGoogle Scholar
  15. 15.
    Senechal, M.: Quasicrystals and Geometry. Cambridge University Press, Cambridge (1996)Google Scholar
  16. 16.
    Moody, R.V. (Ed.): The Mathematics of Long-Range Aperiodic Order. Kluwer, Dordrecht (1997)Google Scholar
  17. 17.
    Patera, J. (Ed.): Quasicrystals and Discrete Geometry. American Mathematical Society, Providence, RI (1998)Google Scholar
  18. 18.
    Baake, M. and Moody, R.V. (Eds.): Directions in Mathematical Quasicrystals. American Mathematical Society, Providence, RI (2000)Google Scholar
  19. 19.
    Hof, A.: Diffraction by aperiodic structures. In: Moody, R.V. (Ed.): The Mathematics of Long-Range Aperiodic Order, pp. 239–268. Kluwer, Dordrecht (1997)Google Scholar
  20. 20.
    Lagarias, J.C.: Mathematical quasicrystals and the problem of diffraction. In: Baake, M. and Moody, R.V. (Eds.) Directions in Mathematical Quasicrystals. p. 61. American Mathematical Society, Providence, RI (2000)Google Scholar
  21. 21.
    Lenz, D.: Aperiodic order and pure point diffraction. Phil. Mag. (2008) in press.Google Scholar
  22. 22.
    Baake, M. and Moody, R.V.: Diffractive point sets with entropy. J. Phys. A 31, 9023–9039 (1998)CrossRefGoogle Scholar
  23. 23.
    Baake, M., Moody, R.V., and Pleasants P. A. B: Diffraction from visible lattice points and kth power free integers. Disc. Math. 221, 3–42 (2000)CrossRefGoogle Scholar
  24. 24.
    Baake, M. and Höffe, M.: Diffraction of random tilings. Some rigorous results. J. Stat. Phys. 99, 219–261 (2000)CrossRefGoogle Scholar
  25. 25.
    Höffe, M. and Baake, M.: Surprises in Diffuse Scattering. Zeit. Krist. 215, 441 (2000)CrossRefGoogle Scholar
  26. 26.
    Baake, M., Moody, R.V., Richard, C. and Sing, B.: Which distribution of matter diffracts? In: Trebin, H.-R. (Ed.) Quasicrystals: Structure and Physical Properties, pp. 188–207. Wiley-VCH, Berlin (2003)Google Scholar
  27. 27.
    Lifshitz, R.: What is a crystal? Zeit. Krist. 222, 313–316 (2007)CrossRefGoogle Scholar
  28. 28.
    Lifshitz, R.: Quasicrystals: The Silver Jubilee. Phil. Mag. (2008), in pressGoogle Scholar
  29. 29.
    Steinhardt, P. J. and Ostlund, S. (Eds.): The physics of quasicrystals. World Scientific, Singapore (1987)Google Scholar
  30. 13.
    Janot, C.: Quasicrystals: A Primer, Second Edition. Clarendon Press, Oxford (1994)Google Scholar
  31. 31.
    Stadnik, Z. M. (Ed.): Physical Properties of Quasicrystals. Springer-Verlag, Berlin Heidelberg (1999)Google Scholar
  32. 32.
    Suck, J.-B., Schreiber, M., and Häussler, P. (Eds.): Quasicrystals: An Introduction to Structure, Physical Properties, and Applications. Springer-Verlag, Berlin Heidelberg (2002)Google Scholar
  33. 33.
    Dubois, J. M.: Useful Quasicrystals. World Scientific, Singapore (2005)Google Scholar
  34. 34.
    Lifshitz, R.: The rebirth of crystallography. Zeit. Krist. 217, 432 (2002)Google Scholar
  35. 35.
    Lifshitz, R.: Quasicrystals: A matter of definition. Found. Phys. 11 (12), 1703–1711 (2003)CrossRefGoogle Scholar
  36. 36.
    Mermin, N. D.: The space groups of icosahedral quasicrystals and cubic, orthorhombic, monoclinic, and triclinic crystals. Revs. Mod. Phys. 64, 3–49 (1992)CrossRefGoogle Scholar
  37. 37.
    Rabson, D. A., Mermin, N. D., Rokhsar, D. S., and Wright D. C.: The space groups of axial crystals and quasicrystals. Rev. Mod. Phys. 63, 699–733 (1991)CrossRefGoogle Scholar
  38. 38.
    Lifshitz, R.: The symmetry of quasiperiodic crystals. Physica A 232, 633–647 (1996)CrossRefGoogle Scholar
  39. 39.
    Janssen, T., Janner, A., Looijenga-Vos, A., and de Wolff, P. M.: Incommensurate and commensurate modulated structures. In: Wilson, A.J.C. (Ed.) International Tables for Crystallography. Vol. C, pp. 797–835. Kluwer, Dordrecht (1992)Google Scholar
  40. 40.
    Lifshitz, R.: Theory of color symmetry for periodic and quasiperiodic crystals. Rev. Mod. Phys. 69 (4), 1181–1218 (1997)CrossRefGoogle Scholar
  41. 41.
    Lifshitz, R.: Symmetry of magnetically ordered quasicrystals. Phys. Rev. Lett. 80, 2717– 2720 (1998)CrossRefGoogle Scholar
  42. 42.
    Lifshitz, R., and Even-Dar Mandel, S.: Magnetically-ordered quasicrystals: Enumeration of spin groups and calculation of magnetic selection rules. Acta Cryst. A 60, 167–194 (2004)CrossRefGoogle Scholar
  43. 43.
    Bak, P.: Icosahedral crystals: Where are the atoms? Phys. Rev. Lett. 56, 861–864 (1986)CrossRefGoogle Scholar
  44. 44.
    Takakura, H., Pay Gomez, C., Yamamoto, A., de Boissieu, M. and Tsai, A. P.: Atomic structure of the binary icosahedral Yb-Cd quasicrystal. Nat. Mater. 6, 58 (2007)CrossRefGoogle Scholar
  45. 45.
    Thiel, P.: News & Views: When all pieces fit together. Nat. Mater. 6, 11 (2007)CrossRefGoogle Scholar
  46. 46.
    Mayou, D.: Discussion of the physical properties of quasicrystals. Phil. Mag. (2008) in pressGoogle Scholar
  47. 47.
    Thiel, P.: Discussion of the surface science of quasicrystals. Phil. Mag. (2008) in pressGoogle Scholar
  48. 48.
    Widom, M.: Discussion of the phasons in quasicrystals and their dynamics, Phil. Mag. (2008) in press.Google Scholar
  49. 49.
    Tsai, A.-P.: Metallurgy of quasicrystals. In: Stadnik, Z. M. (Ed.): Physical Properties of Quasicrystals, pp. 5–50. Springer-Verlag, Berlin Heidelberg (1999)Google Scholar
  50. 50.
    Zeng, X., Ungar, G., Liu, Y., Percec, V., Dulcey, A. E., and Hobbs, J. K.: Supramolecular dendritic liquid quasicrystals. Nature. 428, 157–160 (2004)CrossRefGoogle Scholar
  51. 51.
    Zeng, X.: Liquid quasicrystals. Curr. Opin Colloid Interface Sci. 9, 384 (2005)CrossRefGoogle Scholar
  52. 52.
    Mehl, G. H.: Quasi-periodic organization in soft self-assembling matter. Angew. Chem. Int. Ed. 44, 672–673 (2005)CrossRefGoogle Scholar
  53. 53.
    Takano, A., Wada, S., Sato, S., Araki, T., Hirahara, K., Kazama, T., Kawahara, S., Isono, Y., A. Ohno, Tanaka, N., and Matsushita, Y.: Observation of cylinder-based microphase-separated structures from ABC star-shaped terpolymers investigated by electron computerized tomography. Macromolecules. 37, 9941–9946 (2004)CrossRefGoogle Scholar
  54. 54.
    Matsushita, Y., Kawashima, W., Noro, A., Takano, A., Tanaka, N. and Dotera, T.: Mesoscopic Archimedean tilings in polymeric stars. Acta Cryst. A 61, 38 (2005)CrossRefGoogle Scholar
  55. 55.
    Takano, A., Kawashima, W., Noro, A., Isono, Y., Tanaka, N., Dotera, T. and Matsushita, Y.: A mesoscopic Archimedean tiling having a new complexity in polymeric stars. J. Polym. Sci. Polym. Phys. 43, 2427–2432 (2005)CrossRefGoogle Scholar
  56. 56.
    Lopes, W. A. and Jaeger, H. M.: Hierarchical self-assembly of metal nanostructures on diblock copolymer scaffolds. Nature. 414, 735–738 (2001)CrossRefGoogle Scholar
  57. 57.
    Percec, V., Glodde, M., Bera, T. K., Miura, Y., Shiyanovskaya, I., Singer, K. D., Balagurusamy, V. S. K., Heiney, P. A., Schnell, I., Rapp, A., Spiess, H.-W., Hudson, S. D., and Duan, H.: Self-organization of supramolecular helical dendrimers into complex electronic materials. Nature. 419, 384–387 (2002)CrossRefGoogle Scholar
  58. 58.
    Smith, D. K., Hirst, A. R., Love, C. S., Hardy, J. G., Brignell, S. V., and Huang, B.: Self-assembly using dendritic building blocks – Towards controllable nanomaterials. Prog. Polym. Sci. 30, 220–293 (2005)CrossRefGoogle Scholar
  59. 59.
    Levine, D. and Steinhardt, P. J.: Quasicrystals: A New Class of Ordered Structures. Phys. Rev. Lett. 53, 2477–2480 (1984)CrossRefGoogle Scholar
  60. 60.
    Levine, D. and Steinhardt, P. J.: Quasicrystals I: Definition and structure. Phys. Rev. B 34, 596–616 (1986)CrossRefGoogle Scholar
  61. 61.
    Lifshitz, R.: The square Fibonacci tiling. J. Alloys Comp. 342, 186–190 (2002)CrossRefGoogle Scholar
  62. 62.
    Martin, P.C., Parodi, O., and Pershan, P.S.: Unified hydrodynamic theory for crystals, liquid crystals, and normal fluids. Phys. Rev. A 6 2401–2420 (1972)CrossRefGoogle Scholar
  63. 63.
    Dräger, J. and Mermin, N. D.: Superspace groups without the embedding: The link between superspace and Fourier-space crystallography. Phys. Rev. Lett. 76, 1489–1492 (1996)CrossRefGoogle Scholar
  64. 64.
    Deloudi, S. and Steurer, W.: Photonic quasicrystals.Google Scholar
  65. 65.
    Jin, C., Cheng, B., Man, B., Li, Z., Zhang, D., Ban, S. and Sun, B.: Band gap and wave guiding effect in a quasiperiodic photonic crystal. Appl. Phys. Lett. 75, 1848–1850 (1999)CrossRefGoogle Scholar
  66. 66.
    Zoorob, M. E., Charlton, M. D. B., Parker, G. J., Baumberg, J. J. and Netti, M. C.: Complete photonic bandgaps in 12-fold symmetric quasicrystals. Nature. 404, 740–743 (2000)CrossRefGoogle Scholar
  67. 67.
    Lifshitz, R., Arie, A. and Bahabad, A.: Photonic quasicrystals for nonlinear optical frequency conversion. Phys. Rev. Lett. 95, 133901 (2005)CrossRefGoogle Scholar
  68. 68.
    Bahabad, A., Voloch, N., Arie, A., and Lifshitz, R.: Experimental confirmation of the general solution to the multiple-phase-matching problem. J. Opt. Soc. B 24, 1916–1921 (2007)CrossRefGoogle Scholar
  69. 69.
    Bahabad, A., Lifshitz, R., Voloch, N., and Arie, A.: Nonlinear photonic quasicrystals for novel optical devices. Phil. Mag. 88, 2285–2293 (2008)CrossRefGoogle Scholar
  70. 70.
    Mermin, N.D. and Lifshitz, R.: Bravais classes for the simplest incommensurate crystal phases. Acta Cryst. A 48, 515–532 (1992)CrossRefGoogle Scholar
  71. 71.
    Armstrong, J.A., Bloembergen, N., Ducuing, J. and Pershan, P.S.: Interactions between light waves in a nonlinear dielectric. Phys. Rev. 127, 1918 (1962)CrossRefGoogle Scholar
  72. 72.
    Freund, I.: Phys. Rev. Lett. 21, 1404 (1968)CrossRefGoogle Scholar
  73. 73.
    Bloembergen, N. and Sievers, A.J.: Nonlinear optical properties of periodic laminar structures. Appl. Phys. Lett. 17, 483–485 (1970)CrossRefGoogle Scholar
  74. 74.
    Fejer, M.M., Magel, G.A., Jundt, D.H. and Byer, R.L.: Quasi-phase-matched second harmonic generation: Tuning and tolerances. IEEE J Quant Electron. 28, 2631–2654 (1992)CrossRefGoogle Scholar
  75. 75.
    Zhu, S.-N., Zhu, Y.-Y., and Ming, N.-B.: Quasi-phase-matched third-harmonic generation in a quasiperiodic optical superlattice. Science. 278, 843–846 (1997)CrossRefGoogle Scholar
  76. 76.
    Fradkin-Kashi, K., Arie, A., Urenski, P., and Rosenman, G.: Phys. Multiple nonlinear optical interactions with arbitrary wave vector differences. Rev. Lett. 88, 023903 (2001)CrossRefGoogle Scholar
  77. 77.
    Berger, V.: Non linear photonic crystals. Phys. Rev. Lett. 81, 4136–4139 (1998)CrossRefGoogle Scholar
  78. 78.
    Broderick, N. G.R., Ross, G.W., Offerhaus, H.L., Richardson, D.J., and Hanna, D.C.: Hexagonally poled lithium niobate: A two-dimensional nonlinear photonic crystal. Phys. Rev. Lett. 84, 4345–4348 (2000)CrossRefGoogle Scholar
  79. 79.
    Bratfalean, R.T., Peacock, A.C., Broderick, N.G.R., Gallo, K., and Lewen, R.: Harmonic generation in a two-dimensional nonlinear quasi-crystal. Opt. Lett. 30, 424–426 (2005)CrossRefGoogle Scholar
  80. 80.
    Ma, B., Wang, T., Sheng, Y., Ni, P., Wang, Y., Cheng, B., and Zhang, D.: App. Phys. Lett. 87, 1103 (2005)Google Scholar
  81. 81.
    Hornreich, R. M. and Shtrikman, S.: Broken icosahedral symmetry: A quasicrystalline structure for cholesteric blue phase III. Phys. Rev. Lett. 56, 1723–1726 (1986)CrossRefGoogle Scholar
  82. 82.
    Rokhsar, D. S. and Sethna, J. P.: Quasicrystalline textures of cholesteric liquid crystals: Blue phase III? Phys. Rev. Lett. 56, 1727–1730 (1986)CrossRefGoogle Scholar
  83. 83.
    Wright, D. C. and Mermin, N. D.: Crystalline liquids: The blue phases. Rev. Mod. Phys. 61, 385–432 (1989)CrossRefGoogle Scholar
  84. 84.
    Lubensky, T. C. and Stark, H.: Theory of a critical point in the blue-phase-III isotropic phase diagram. Phys. Rev. E 53, 714–720 (1996)CrossRefGoogle Scholar
  85. 85.
    Renn, S. R. and Lubensky, T. C.: Abrikosov dislocation lattice in a model of the cholesteric– to–smectic-A transition. Phys. Rev. A 38, 2132–2147 (1988)CrossRefGoogle Scholar
  86. 86.
    Goodby, J. W., Waugh, M. A., Stein, S. M., Chin, E., Pindak R., and Patel, J. S.: Characterization of a new helical smectic liquid crystal. Nature. 337, 449–452 (1989)CrossRefGoogle Scholar
  87. 87.
    Dotera, T., and Gemma, T.: Dodecagonal quasicrystal in a polymeric alloy. Phil. Mag. 86, 1085–1091 (2006)CrossRefGoogle Scholar
  88. 88.
    Chen, B., Zeng, X., Baumeister, U., Ungar, G. and Tschierske, C.: Liquid crystalline networks composed of pentagonal, square, and triangular cylinders. Science. 307, 96–99 (2005)CrossRefGoogle Scholar
  89. 89.
    Edwards, W. S. and Fauve, S.: Parametrically excited quasicrystalline surface waves. Phys. Rev. E 47, R788 (1993)CrossRefGoogle Scholar
  90. 90.
    Lifshitz, R. and Petrich, D. M.: Theoretical model for Faraday waves with multiple-frequency forcing. Phys. Rev. Lett. 79, 1261–1264 (1997)CrossRefGoogle Scholar
  91. 91.
    Swift, J. B. and Hohenberg, P. C.: Hydrodynamic fluctuations at the convective instability. Phys. Rev. A 15, 319–328 (1977)CrossRefGoogle Scholar
  92. 92.
    Cross, M. C. and Hohenberg, P. C.: Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851–1112 (1993)CrossRefGoogle Scholar
  93. 93.
    Chaikin, P. M. and Lubensky, T. C.: Principles of Condensed Matter Physics. Cambridge University Press, New York (1995)Google Scholar
  94. 94.
    Gronlund, L. and Mermin, N. D.: Instability of quasicrystalline order in the local Kalugin-Kitaev–Levitov model. Phys. Rev. B 38, 3699–3710 (1988)CrossRefGoogle Scholar
  95. 95.
    Lifshitz, R. and Diamant, H.: Soft quasicrystals – Why are they stable? Phil. Mag. 87, 3021– 3030 (2007)Google Scholar
  96. 96.
    Gompper, G. and Schick, M.: Self-assembling amphiphilic systems. In: Domb, C. and Lebowitz, J. L. (Eds.) Phase Transitions and Critical Phenomena, pp. 1–76. Academic, London, (1994)Google Scholar
  97. 97.
    Mermin, N. D. and Troian, S. M.: Mean-field theory of quasicrystalline order. Phys. Rev. Lett. 54, 1524–1527 (1985)CrossRefGoogle Scholar
  98. 98.
    Müller, H. W.: Model equations for two-dimensional quasipatterns. Phys. Rev. E 49, 1273– 1277 (1994)CrossRefGoogle Scholar
  99. 99.
    Likos, C. N., Lowen, H., Watzlawek, M., Abbas, B., Jucknischke, O., Allgaier, J., and Richter, D.: Star polymers viewed as ultrasoft colloidal particles. Phys. Rev. Lett. 80, 4450– 4453 (1998)CrossRefGoogle Scholar
  100. 100.
    Watzlawek, M., Lowen, H., and Likos, C. N.: The anomalous structure factor of dense star polymer solutions. J. Phys. Condens. Matter 10, 8189–8205 (1998)CrossRefGoogle Scholar
  101. 101.
    Watzlawek, M., Likos, C. N., and Lowen, H.: Phase diagram of star polymer solutions. Phys. Rev. Lett. 82, 5289–5292 (1999)CrossRefGoogle Scholar
  102. 102.
    Jusufi, A., Watzlawek, M., and Lowen, H.: Effective interaction between star polymers. Macromolecules 32, 4470–4473 (1999)CrossRefGoogle Scholar
  103. 103.
    Likos, C. N., Hoffmann, N., Lowen, H., and Louis, A. A.: Exotic fluids and crystals of soft polymeric colloids. J. Phys. Condens. Matter 14, 7681–7698 (2002)CrossRefGoogle Scholar
  104. 104.
    Likos, C. N., Schmidt, M., Lowen, H., Ballauff, M., Potschke, D., and Lindner, P.: Soft interaction between dissolved flexible dendrimers: Theory and experiment. Macromolecules 34, 2914–2920 (2001)CrossRefGoogle Scholar
  105. 105.
    Grason, G. M. and Kamien, R. D.: Interfaces in diblocks: A study of miktoarm star copolymers. Macromolecules 37, 7371–7380 (2004); 38, 2022 (2005)CrossRefGoogle Scholar
  106. 106.
    Von Ferber, C., Jusufi, A., Likos, C. N., Lowen, H., and Watzlawek, M.: Triplet interactions in star polymer solutions. Eur. Phys. J. E 2, 311–318 (2000)CrossRefGoogle Scholar
  107. 107.
    Ziherl, P. and Kamien, R. D.: Maximizing entropy by minimizing area: Towards a new principle of self-organization. J. Phys. Chem. B 105, 10147–10158 (2001)Google Scholar
  108. 108.
    Kung, W., Ziherl, P., and Kamien, R. D.: The foam analogy: From phases to elasticity. J. Colloid Interface Sci. 275, 539–547 (2004)CrossRefGoogle Scholar
  109. 109.
    Li, Y., Lin, S.-T., and Goddard III, W. A.: Efficiency of various lattices from hard ball to soft ball: Theoretical study of thermodynamic properties of dendrimer liquid crystal from atomistic simulation. J. Am. Chem. Soc. 126, 1872–1885 (2004)CrossRefGoogle Scholar
  110. 110.
    110 Glaser, M. A., Grason, G. M., Kamien, R. D., Košmrlj, A., Santangelo, C. D., and Ziherl, P.: Soft spheres make more mesophases. preprint, (cond-mat/0609570)Google Scholar
  111. 111.
    Dotera, T.: Cell crystals: Kelvin's polyhedra in block copolymer melts. Phys. Rev. Lett. 82, 105–108 (1999)CrossRefGoogle Scholar
  112. 112.
    Cho, B.-K., Jain, A., Gruner, S. M., and Wiesner, U.: Mesophase structure-mechanical and ionic transport correlations in extended amphiphilic dendrons. Science 305, 1594–1598 (2004)CrossRefGoogle Scholar
  113. 113.
    Kalugin, P. A., Kitaev, A. Yu., and Levitov, L. C.: Al0.86Mn0.14: a six-dimensional crystal. JETP Lett. 41, 145–149 (1985)Google Scholar
  114. 114.
    Alexander, S. and McTague, J.: Should all crystals be bcc? Landau theory of solidification and crystal nucleation. Phys. Rev. Lett. 41, 702–705 (1984)CrossRefGoogle Scholar
  115. 115.
    Narasimhan, S. and Ho, T. L.: Mean-field-theory study of the energetics of icosahedral, decagonal, and dodecagonal quasicrystals. Phys. Rev. B 37, 800–809 (1988)CrossRefGoogle Scholar
  116. 116.
    Roan, J.-R. and Shakhnovich, E. I.: Stability study of icosahedral phases in diblock copolymer melt. J. Chem. Phys. 109, 7591–7611 (1998)CrossRefGoogle Scholar
  117. 117.
    Mermin, N. D.: The topological theory of defects in ordered media. Rev. Mod. Phys. 51, 591–648 (1979)CrossRefGoogle Scholar
  118. 118.
    Levine, D., Lubensky, T. C., Ostlund, S., Ramaswamy, S., and Steinhardt, P. J.: Elasticity and dislocations in pentagonal and icosahedral quasicrystals. Phys. Rev. Lett. 54, 1520–1523 (1985)CrossRefGoogle Scholar
  119. 119.
    Lubensky, T. C., Ramaswamy, S., and Toner, J.: Hydrodynamics of icosahedral quasicrystals. Phys. Rev. B 32, 7444–7452 (1985)CrossRefGoogle Scholar
  120. 120.
    Socolar, J. E. S., Lubensky, T. C., and Steinhardt, P. J.: Phonons, phasons, and dislocations in quasicrystals. Phys. Rev. B 34, 3345–3360 (1986)CrossRefGoogle Scholar
  121. 121.
    Lubensky, T. C., Socolar, J. E. S., Steinhardt, P. J., Bancel, P. A., and Heiney, P. A.: Distortion and peak broadening in quasicrystal diffraction patterns. Phys. Rev. Lett. 57, 1440–1443 (1986)CrossRefGoogle Scholar
  122. 122.
    Socolar, J. E. S. and Wright, D. C.: Explanation of peak shapes observed in diffraction from icosahedral quasicrystals. Phys. Rev. Lett. 59, 221–224 (1987)CrossRefGoogle Scholar
  123. 123.
    Jaric, M. V. and Nelson, D. R.: Diffuse scattering from quasicrystals. Phys. Rev. B 37, 4458–4472 (1988)Google Scholar
  124. 124.
    Bancel, P. A.: Dynamical phasons in a perfect quasicrystal. Phys. Rev. Lett. 63, 2741–2744 (1989); Erratum, Phys. Rev. Lett. 64, 496 (1990)CrossRefGoogle Scholar
  125. 125.
    Jiang, J. C., Fung, K. K., and Kuo, K. H.: Discommensurate microstructures in phason-strained octagonal quasicrystal phases of Mo-Cr-Ni. Phys. Rev. Lett. 68, 616–619 (1992)CrossRefGoogle Scholar
  126. 126.
    Li, H. L., Zhang, Z., and Kuo, K. H.: Experimental Ammann-line analysis of phasons in the Al-Cu-Co-Si decagonal quasicrystal. Phys. Rev. B 50, 3645–3647 (1994)CrossRefGoogle Scholar
  127. 127.
    De Boissieu, M., Boudard, M., Hennion, B., Bellissent, R., Kycia, S., Goldman, A., Janot, C., and Audier, M.: Diffuse Scattering and Phason Elasticity in the AlPdMn Icosahedral Phase. Phys. Rev. Lett. 75, 89–92 (1995)CrossRefGoogle Scholar
  128. 128.
    Edagawa, K., Suzuki, K., and Takeuchi, S.: High resolution transmission electron microscopy observation of thermally fluctuating phasons in decagonal Al-Cu-Co. Phys. Rev. Lett. 85, 1674–1677 (2000)CrossRefGoogle Scholar
  129. 129.
    Francoual, S., Livet, F., De Boissieu, M., Yakhou, F., Bley, F., Letoublon, A., Caudron, R., and Gastaldi, J.: Dynamics of Phason Fluctuations in the i-AlPdMn Quasicrystal. Phys. Rev. Lett. 91, 225501 (2003)CrossRefGoogle Scholar
  130. 130.
    Janssen, T., Radulescu, O., and Rubtsov, A.N.: Phasons, sliding modes and friction. Eur. Phys. J. B 29, 85–95 (2002)CrossRefGoogle Scholar
  131. 131.
    Barak, G. and Lifshitz, R.: Dislocation dynamics in a dodecagonal quasiperiodic structure. Phil. Mag. 86, 1059–1064 (2006)CrossRefGoogle Scholar
  132. 132.
    Freedman, B., Bartal, G., Segev, M., Lifshitz, R., Christodoulides, D. N., and Fleischer, J. W.: Observation of wave and defect dynamics in nonlinear photonic quasicrystals. Nature. 440, 1166–1169 (2006)CrossRefGoogle Scholar
  133. 133.
    Freedman, B., Lifshitz, R., Fleischer, J.W., and Segev, M.: Phason dynamics in nonlinear photonic quasicrystals. Nat. Mater. 6, 776–781 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2009

Authors and Affiliations

  • R. Lifshitz
    • 1
  1. 1.Raymond and Beverly Sackler School of Physics & AstronomyTel Aviv UniversityTel AvivIsrael

Personalised recommendations