Advertisement

Picornaviruses

  • David Neubauer
  • Jutta Steinberger
  • Tim Skern
Chapter
Part of the Proteases in Biology and Disease book series (PBAD, volume 8)

The picornavirus family contains several major human and animal pathogens. Vaccines against some of these pathogens are available. However, the availability of potent antiviral compounds would be an appreciable advantage in fighting these pathogens. Inside their non-enveloped capsid, picornaviruses possess a positive sense RNA genome with a single open reading frame. Upon release into the cytoplasm, the genome is translated into a single polyprotein that is processed by virally encoded proteinases. These proteinases represent excellent targets for the development of anti-virals for two reasons. First, efficient polyprotein processing is essential for successful viral replication. Second, the picornaviral proteinases show notable differences to cellular proteinases. To aid in the development of anti-virals, detailed knowledge of the mechanisms, substrate specificities and structures of these proteinases is needed. This chapter reviews recent progress, discusses selected substances with antiviral activity against picornavirus proteinases and outlines several new avenues for the design of novel anti-virals.

Keywords

Poliovirus human rhinovirus aphthovirus proteolytic processing translational control 

References

  1. Allaire, M., Chernaia, M.M, Malcolm, B.A., and James, M.N.G. 1994, Picornaviral 3C cysteine proteinases have a fold similar to chymotrypsin-like serine proteinases. Nature 369: 72–76.PubMedGoogle Scholar
  2. Almstead, L.L. and Sarnow, P. 2007, Inhibition of U snRNP assembly by a virus-encoded protei-nase. Genes Dev 21: 1086–1097.PubMedGoogle Scholar
  3. Andino, R., Rieckhof, G.E., and Baltimore, D. 1990, A functional ribonucleoprotein complex forms around the 5′ end of poliovirus RNA. Cell 63: 369–380.PubMedGoogle Scholar
  4. Andrianarivelo, M.R., Rabarijaona, L., Boisier, P., Chezzi, C., and Zeller, H.G. 1999, Wild polio-virus circulation among healthy children immunized with oral polio vaccine in antananarivo. Madagascar Trop Med Int Health 4: 50–57.Google Scholar
  5. Anon, 2008, Progress toward interruption of wild poliovirus transmission — Worldwide, January 2007–May 2008. Morbidity and Mortality Weekly Report of the CDC 57: 489–494.Google Scholar
  6. Argos, P., Kamer, G., Nickelin, M.J.H., and Wimmer, E. 1984, Similarity in gene organisation and homology between proteins of animal picornaviruses and a plant comovirus suggest a common ancestry of these virus families. Nucl Acids Res 12: 7251–7267.PubMedGoogle Scholar
  7. Armer, H., Moffat, K., Wileman, T., Belsham, G.J., Jackson, T., Duprex, W.P., Ryan, M., and Monaghan, P. 2008, Foot-and-mouth disease virus, but not bovine enterovirus, targets the host cell cytoskeleton via the nonstructural protein 3Cpro. J Virol 82: 10556–10566.PubMedGoogle Scholar
  8. Arruda, E., Pitkaranta, A., Witek, T.A., Jr., Doyle, C.A. and Hayden, F.G. 1997, Frequency and natural history of rhinovirus infections in adults during autumn. J Clin Microbiol 35: 2864–2868.PubMedGoogle Scholar
  9. Atkins, J.F., Wills, N.M., Loughran, G., Wu, C.Y., Parsawar, K., Ryan, M.D., Wang, C.H., and Nelson, C.C. 2007, A case for “StopGo”: reprogramming translation to augment codon meaning of GGN by promoting unconventional termination (Stop) after addition of glycine and then allowing continued translation (Go). RNA 13: 803–810.PubMedGoogle Scholar
  10. Aylward, R.B., Sutter, R.W., and Heymann, D.L. 2005, Policy. OPV cessation — the final step to a “polio-free” world. Science 310: 625–626.PubMedGoogle Scholar
  11. Baboonian, C., Davies, M.J., Booth, C., and McKenna, W.J. 1997, Coxsackie B viruses and human heart disease. Curr Top Microbiol Immunol 223: 31–52.PubMedGoogle Scholar
  12. Badorff, C. and Knowlton, K.U. 2004, Dystrophin disruption in enterovirus-induced myocarditis and dilated cardiomyopathy: from bench to bedside. Med Microbiol Immunol 193: 121–126.PubMedGoogle Scholar
  13. Badorff, C., Lee, G.H., Lamphear, B.J., Martone, M.E., Campbell, K.P., Rhoads, R.E., and Knowlton, K.U. 1999, Enteroviral protease 2A cleaves dystrophin: evidence of cytoskeletal disruption in an acquired cardiomyopathy. Nature Med 5: 320–326.PubMedGoogle Scholar
  14. Badorff, C., Berkely, N., Mehrotra, S., Talhouk, J.W., Rhoads, R.E., and Knowlton, K.U. 2000, Enteroviral protease 2A directly cleaves dystrophin and is inhibited by a dystrophin-based substrate analogue. J Biol Chem 275: 11191–11197.PubMedGoogle Scholar
  15. Baxter, N.J., Roetzer, A., Liebig, H.D., Sedelnikova, S.E., Hounslow, A.M., Skern, T., and Waltho, J.P. 2006, Structure and dynamics of coxsackievirus B4 2A proteinase, an enzyme involved in the etiology of heart disease. J Virol 80: 1451–1462.PubMedGoogle Scholar
  16. Bazan, J.F. and Fletterick, R.J. 1988, Viral cysteine proteases are homologous to the trypsin-like family of serine proteases: structural and functional implications. Proc Natl Acad Sci USA 85: 7872–7876.PubMedGoogle Scholar
  17. Belsham, G.J., McInerney, G.M., and Ross-Smith, N. 2000, Foot-and-mouth disease virus 3C protease induces cleavage of translation initiation factors eIF4A and eIF4G within infected cells. J Virol 74: 272–280.PubMedGoogle Scholar
  18. Bergmann, E.M., Mosimann, S.C., Chernaia, M.M., Malcolm, B.A., and James, M.N.G. 1997, The refined crystal structure of the 3C gene product from hepatitis A virus: specific proteinase activity and RNA recognition. J Virol 71: 2436–2448.PubMedGoogle Scholar
  19. Binford, S.L., Maldonado, F., Brothers, M.A., Weady, P.T., Zalman, L.S., Meador, 3rd, J.W., Matthews, D.A., and Patick, A.K. 2005, Conservation of amino acids in human rhinovirus 3C protease correlates with broad-spectrum antiviral activity of rupintrivir, a novel human rhino-virus 3C protease inhibitor. Antimicrob Agents Chemother 49: 619–626.PubMedGoogle Scholar
  20. Birtley, J.R., Knox, S.R., Jaulent, A.M., Brick, P., Leatherbarrow, R.J., and Curry, S. 2005, Crystal structure of foot-and-mouth disease virus 3C protease. New insights into catalytic mechanism and cleavage specificity. J Biol Chem 280: 11520–11527.PubMedGoogle Scholar
  21. Bjorndahl, T.C., Andrew, L.C., Semenchenko, V., and Wishart, D.S. 2007, NMR solution structures of the apo and peptide-inhibited human rhinovirus 3C protease (Serotype 14): structural and dynamic comparison. Biochemistry 46: 12945–12958.PubMedGoogle Scholar
  22. Brundage, S.C. and Fitzpatrick, A.N. 2006, Hepatitis A. Am Fam Physician 73: 2162–2168.PubMedGoogle Scholar
  23. Cencic, R., Mayer, C., Juliano, M.A., Juliano, L., Konrat, R., Kontaxis, G., and Skern, T. 2007, Investigating the substrate specificity and oligomerisation of the leader protease of foot and mouth disease virus using NMR. J Mol Biol 373: 1071–1087.PubMedGoogle Scholar
  24. Clamp, M., Cuff, J., Searle, S.M., and Barton, G.J. 2004, The Jalview Java alignment editor. Bioinformatics 20: 426–427.PubMedGoogle Scholar
  25. Collett, M.S., Neyts, J., and Modlin, J.F. 2008, A case for developing antiviral drugs against polio. Antiviral Res 79: 179–187.PubMedGoogle Scholar
  26. Crowder, S., and Kirkegaard, K. 2005, Trans-dominant inhibition of RNA viral replication can slow growth of drug-resistant viruses. Nat Genet 37: 701–709.PubMedGoogle Scholar
  27. Curry, S., Roque-Rosell, N., Sweeney, T.R., Zunszain, P.A., and Leatherbarrow, R.J. 2007, Structural analysis of foot-and-mouth disease virus 3C protease: a viable target for antiviral drugs? Biochem Soc Trans 35: 594–598.PubMedGoogle Scholar
  28. DeLano, W.L. 2002, The PyMOL Molecular Graphics System, DeLano Scientific, San Carlos, CA.Google Scholar
  29. de Los Santos, T., de Avila Botton, S., Weiblen, R., and Grubman, M.J. 2006, The leader protein-ase of foot-and-mouth disease virus inhibits the induction of beta interferon mRNA and blocks the host innate immune response. J Virol 80: 1906–1914.PubMedGoogle Scholar
  30. De Palma, A.M., Vliegen, I., De Clercq, E., and Neyts, J. 2008, Selective inhibitors of picornavi-rus replication. Med Res Rev 28: 823–884.PubMedGoogle Scholar
  31. Deszcz, L., Seipelt, J., Vassilieva, E., Roetzer, A., and Kuechler, E. 2004, Antiviral activity of caspase inhibitors: effect on picornaviral 2A proteinase. FEBS Lett 560: 51–55.PubMedGoogle Scholar
  32. Deszcz, L., Cencic, R., Sousa, C., Kuechler, E., and Skern, T. 2006, An anti-viral peptide inhibitor active against picornaviral 2A proteinases but not cellular caspases. J Virol 80: 9619–9627.PubMedGoogle Scholar
  33. Devaney, M.A., Vakharia, V.N., Lloyd, R.E., Ehrenfeld, E., and Grubman, M.J. 1988, Leader protein of foot-and-mouth disease virus is required for cleavage of the p220 component of the cap-binding protein complex. J Virol 62: 4407–4409.PubMedGoogle Scholar
  34. Dragovich, P.S., Webber, S.E., Babine, R.E., Fuhrman, S.A., Patick, A.K., Matthews, D.A., Lee, C.A., Reich, S.H., Prins, T,J., Marakovits, J.T., Littlefield, E.S., Zhou, R., Tikhe, J., Ford, C.E., Wallace, M.B., Meador, J.W.R., Ferre, R.A., Brown, E.L., Binford, S.L., Harr, J.E., DeLisle, D.M., and Worland, S.T. 1998, Structure-based design, synthesis, and biological evaluation of irreversible human rhinovirus 3C protease inhibitors. 1. Michael acceptor structure-activity studies. J Med Chem 41: 2806–2818.PubMedGoogle Scholar
  35. Dragovich, P.S., Webber, S.E., Babine, R.E., Fuhrman, S.A., Patick, A.K., Matthews, D.A., Reich, S.H., Marakovits, J.T., Prins, T.J., Zhou, R., Tikhe, J., Littlefield, E.S., Bleckman, T.M., Wallace, M.B., Little, T.L., Ford, C.E., Meador, J.W.R., Ferre, R.A., Brown, E.L., Binford, S.L., DeLisle, D.M., and Worland, S.T. 1998, Structure-based design, synthesis, and biological evaluation of irreversible human rhinovirus 3C protease inhibitors. 2. Peptide structure-activity studies. J Med Chem 41: 2819–2834.PubMedGoogle Scholar
  36. Duechler, M, Skern, T., Sommergruber, W., Neubauer, C., Gruendler, P., Fogy, I., Blaas, D., and Kuechler, E. 1987, Evolutionary relationships within the human rhinovirus genus: comparison of serotypes 89, 2, and 14. Proc Natl Acad Sci USA 84: 2605–2609.PubMedGoogle Scholar
  37. Falk, M.M., Grigera, P.R., Bergmann, I.E., Zibert, A., Multhaup, G., and Beck, E. 1990, Foot-and-mouth disease virus protease-3C induces specific proteolytic cleavage of host cell histone-H3. J Virol 64: 748–756.PubMedGoogle Scholar
  38. Ferrer-Orta, C., Arias, A., Perez-Luque, R., Escarmis, C., Domingo, E., and Verdaguer, N. 2007, Sequential structures provide insights into the fidelity of RNA replication. Proc Natl Acad Sci USA 104: 9463–9468.PubMedGoogle Scholar
  39. Foeger, N., Glaser, W., and Skern, T. 2002, Recognition of eukaryotic initiation factor 4G isoforms by picornaviral proteinases. J Biol Chem 277: 44300–44309.PubMedGoogle Scholar
  40. Foeger, N., Schmid, E.M., and Skern, T. 2003, Human rhinovirus 2 2Apro recognition of eukaryo-tic initiation factor 4GI. Involvement of an exosite. J Biol Chem 278: 33200–32007.PubMedGoogle Scholar
  41. Foeger, N., Kuehnel, E., Cencic, R., and Skern, T. 2005, The binding of foot-and-mouth disease virus leader proteinase to eIF4GI involves conserved ionic interactions. FEBS J 272: 2602–2611.PubMedGoogle Scholar
  42. Glaser, W., Cencic, R., and Skern, T. 2001, Foot-and-mouth disease Leader proteinase: involvement of C-terminal residues in self-processing and cleavage of eIF4GI. J Biol Chem 276: 35473–35481.PubMedGoogle Scholar
  43. Glaser, W., Triendl, A., and Skern, T. 2003, The processing of eIF4GI by human rhinovirus 2 2Apro: relationship to self-cleavage and role of zinc. J Virol 77: 5021–5025.PubMedGoogle Scholar
  44. Gorbalenya, A., and Svitkin, Y. 1983, Protease of encephalomyocarditis virus: purification and role of the SH groups in processing of the structural proteins precursor. Biochemistry (USSR) 48: 385–395.Google Scholar
  45. Gorbalenya, A.E., Donchenko, A.P., Blinov, V.M., and Koonin, E.V. 1989, Cysteine proteases of positive strand RNA viruses and chymotrypsin-like serine proteases. A distinct protein super-family with a common structural fold. FEBS Lett 243: 103–114.PubMedGoogle Scholar
  46. Gorbalenya, A.E., Koonin, E.V., and Lai, M.M. 1991, Putative papain-related thiol proteases of positive-strand RNA viruses. Identification of rubi- and aphthovirus proteases and delineation of a novel conserved domain associated with proteases of rubi-, alpha- and coronaviruses. FEBS Lett 288: 201–205.PubMedGoogle Scholar
  47. Gouvea, I.E., Judice, W.A., Cezari, M.H., Juliano, M.A., Juhasz, T., Szeltner, Z., Polgar, L., and Juliano, L. 2006, Kosmotropic salt activation and substrate specificity of poliovirus protease 3C. Biochemistry 45: 12083–12089.PubMedGoogle Scholar
  48. Gradi, A., Svitkin, Y.V., Imataka, H., and Sonenberg, N. 1998, Proteolysis of human eukaryotic translation initiation factor eIF4GII, but not eIF4GI, coincides with the shutoff of host protein synthesis after poliovirus infection. Proc Natl Acad Sci USA 95: 11089–11094.PubMedGoogle Scholar
  49. Gradi, A., Imataka, H., Svitkin, Y.V., Rom, E., Raught, B., Morino, S., and Sonenberg, N. 1998, A novel functional human eukaryotic translation initiation factor 4G. Mol Cell Biol 18: 334–342.PubMedGoogle Scholar
  50. Gradi, A., Svitkin, Y.V., Sommergruber, W., Imataka, H., Morino, S., Skern, T., and Sonenberg, N. 2003, Human rhinovirus 2A proteinase cleavage sites in eukaryotic initiation factors (eIF) 4GI and eIF4GII are different. J Virol 77: 5026–5029.PubMedGoogle Scholar
  51. Gradi, A., Foeger, N., Strong, R., Svitkin, Y.V., Sonenberg, N., Skern, T., and Belsham, G. 2004, Cleavage of eukaryotic translation initiation factor 4GII within foot-and-mouth disease virus-infected cells: identification of the L-protease cleavage site in vitro. J Virol 78: 3271–3278.PubMedGoogle Scholar
  52. Graham, K.L., Gustin, K.E., Rivera, C., Kuyumcu-Martinez, N.M., Choe, S.S., Lloyd, R.E., Sarnow, P., and Utz, P.J. 2004, Proteolytic cleavage of the catalytic subunit of DNA-dependent protein kinase during poliovirus infection. J Virol 78: 6313–6321.PubMedGoogle Scholar
  53. Grubman, M.J. and Baxt, B. 2004, Foot-and-mouth disease. Clin Microbiol Rev 17: 465–493.PubMedGoogle Scholar
  54. Guarné, A., Tormo, J., Kirchweger, K., Pfistermueller, D., Fita, I., and Skern, T. 1998, Structure of the foot-and-mouth disease virus leader protease: a papain-like fold adapted for self-processing and eIF4G recognition. EMBO J 17: 7469–7479.Google Scholar
  55. Gustin, K.E., and Sarnow, P. 2001, Effects of poliovirus infection on nucleo-cytoplasmic trafficking and nuclear pore complex composition. EMBO J 20: 240–249.PubMedGoogle Scholar
  56. Hansen, J.L., Long, A.M., and Schultz, S.C. 1997, Structure of the RNA-dependent RNA polymerase of poliovirus. Structure 5: 1109–1122.PubMedGoogle Scholar
  57. Harki, D.A., Graci, J.D., Galarraga, J.E., Chain, W.J., Cameron, C.E., and Peterson, B.R. 2006, Synthesis and antiviral activity of 5-substituted cytidine analogues: identification of a potent inhibitor of viral RNA-dependent RNA polymerases. J Med Chem 49: 6166–6169.PubMedGoogle Scholar
  58. Hayden, F.G., Turner, R.B., Gwaltney, G.M., Chi-Burris, K., Gersten, M., Hsyu, P., Patick, A.K., Smith, 3rd, G.J., and Zalman, L.S. 2003, Phase II, randomized, double-blind, placebo-controlled studies of rupintrivir nasal spray 2-percent suspension for prevention and treatment of experimentally induced rhinovirus colds in healthy volunteers. Antimicrob Agents Chemother 47: 3907–3916.PubMedGoogle Scholar
  59. Huitema, C., Zhang, J., Yin, J., James, M.N., Vederas, J.C., and Eltis, L.D. 2008, Heteroaromatic ester inhibitors of hepatitis A virus 3C proteinase: evaluation of mode of action. Bioorg Med Chem 16: 5761–5777.PubMedGoogle Scholar
  60. Joachims, M., Harris, K.S., and Etchison, D. 1995, Poliovirus protease 3C mediates cleavage of microtubule-associated protein 4. Virology 211: 451–461.PubMedGoogle Scholar
  61. Joachims, M., Van Breugel, P.C., and Lloyd, R.E. 1999, Cleavage of poly(A)-binding protein by enterovirus proteases concurrent with inhibition of translation in vitro. J Virol 73: 718–727.PubMedGoogle Scholar
  62. Johnston, S.L., Bardin, P.G., and Pattemore, P.K. 1993, Review - viruses as precipitants of asthma symptoms.3. Rhinoviruses - molecular biology and prospects for future intervention. Clin Exp Allergy 23: 237–246.PubMedGoogle Scholar
  63. Jurgens, C.K., Barton, D.J., Sharma, N., Morasco, B.J., Ogram, S.A., and Flanegan, J.B. 2006, 2Apro is a multifunctional protein that regulates the stability, translation and replication of poliovirus RNA. Virology 345: 346–357.PubMedGoogle Scholar
  64. Katz, S.L. 2006, Polio — new challenges in 2006. J Clin Virol 36: 163–165.PubMedGoogle Scholar
  65. Kirchweger, R., Ziegler, E., Lamphear, B.J., Waters, D., Liebig, H.D., Sommergruber, W., Sobrino, F., Hohenadl, C., Blaas, D., Rhoads, R.E., and Skern, T. 1994, Foot-and-mouth disease virus leader proteinase: purification of the Lb form and determination of its cleavage site on eIF-4 gamma. J Virol 68: 5677–5684.PubMedGoogle Scholar
  66. Kleina, L.G. and Grubman, M.J. 1992, Antiviral effects of a thiol protease inhibitor on foot-and-mouth disease virus. J Virol 66: 7168–7175.PubMedGoogle Scholar
  67. Koenig, H. and Rosenwirth, B. 1988, Purification and partial characterization of poliovirus protease 2A by means of a functional assay. J Virol 62: 1243–1250.Google Scholar
  68. Kuehnel, E., Cencic, R., Foeger, N., and Skern, T. 2004, Foot-and-mouth disease virus leader pro-teinase: specificity at the P2 and P3 positions and comparison with other papain-like enzymes. Biochemistry 43: 11482–11490.PubMedGoogle Scholar
  69. Lall, M.S., Jain, R.P., and Vederas, J.C. 2004, Inhibitors of 3C cysteine proteinases from picorna-viridae. Curr Top Med Chem 4: 1239–1253.PubMedGoogle Scholar
  70. Lau, S.K., Yip, C.C., Tsoi, H.W., Lee, R.A., So, L.Y., Lau, Y.L., Chan, K.H., Woo, P.C., and K.Y. Yuen. 2007, Clinical features and complete genome characterization of a distinct human rhinovirus (HRV) genetic cluster, probably representing a previously undetected HRV species, HRV-C, associated with acute respiratory illness in children. J Clin Microbiol 45: 3655–3664.PubMedGoogle Scholar
  71. Lee, E.S., Lee, W.G., Yun, S.H., Rho, S.H., Im, I., Yang, S.T., Sellamuthu, S., Lee, Y.J., Kwon, S.J., Park, O.K., Jeon, E.S., Park, W.J., and Kim, Y.C. 2007, Development of potent inhibitors of the coxsackievirus 3C protease. Biochem Biophys Res Commun 358: 7–11.PubMedGoogle Scholar
  72. Li, W., Ross-Smith, N., Proud, C.G., and Belsham, G.J. 2001, Cleavage of translation initiation factor 4AI (eIF4AI) but not eIF4AII by foot-and-mouth disease virus 3C protease: identification of the eIF4AI cleavage site. FEBS Lett 507: 1–5.PubMedGoogle Scholar
  73. Li, X., Lu, H.H., Mueller, S., and Wimmer, E. 2001, The C-terminal residues of poliovirus proteinase 2A(pro) are critical for viral RNA replication but not for cis- or trans-proteolytic cleavage. J Gen Virol 82: 397–408.PubMedGoogle Scholar
  74. Liebig, H.-D., Ziegler, E., Yan, R., Hartmuth, K., Klump, H., Kowalski, H., Blaas, D., Sommergruber, W., Frasel, L., Lamphear, B., Rhoads, R., Kuechler, E., and Skern, T. 1993, Purification of two picornaviral 2A proteinases: interaction with eIF-4gamma and influence on in vitro translation. Biochemistry 32: 7581–7588.PubMedGoogle Scholar
  75. Lloyd, R.E. 2006, Translational control by viral proteinases. Virus Res 119: 76–88.PubMedGoogle Scholar
  76. Lyle, J.M., Clewell, A., Richmond, K., Richards, O.C., Hope, D.A., Schultz, S.C., and Kirkegaard, K. 2002, Similar structural basis for membrane localization and protein priming by an RNA-dependent RNA polymerase. J Biol Chem 277: 16324–16331.PubMedGoogle Scholar
  77. MacLennan, C., Dunn, G., Huissoon, A.P., Kumararatne, D.S., Martin, J., O'Leary, P., Thompson, R.A., Osman, H., Wood, P., Minor, P., Wood, D.J., and Pillay, D. 2004, Failure to clear persistent vaccine-derived neurovirulent poliovirus infection in an immunodeficient man. Lancet 363: 1509–1513.PubMedGoogle Scholar
  78. Marcotte, L.L., Wass, A.B., Gohara, D.W., Pathak, H.B., Arnold, J.J., Filman, D.J., Cameron, C.E., and Hogle, J.M. 2007, Crystal structure of poliovirus 3CD protein: virally encoded protease and precursor to the RNA-dependent RNA polymerase. J Virol 81: 3583–3596.PubMedGoogle Scholar
  79. Matthews, D.A., Smith, W.W., Ferre, R.A., Condon, B., Budahazi, G., Sisson, W., Villafranca, J.E., Janson, C.A., McElroy, H.E., Gribskov, C.L., and Worland, S. 1994, Structure of human rhi-novirus 3C protease reveals a trypsin-like polypeptide fold, RNA-binding site, and means for cleaving precursor polyprotein. Cell 77: 761–771.PubMedGoogle Scholar
  80. Matthews, D.A., Dragovich, P.S., Webber, S.E., Fuhrman, S.A., Patick, A.K., Zalman, L.S., Hendrickson, T.F., Love, R.A., Prins, T.J., Marakovits, J.T., Zhou, R., Tikhe, J., Ford, C.E., Meador, J.W., Ferre, R.A., Brown, E.L., Binford, S.L., Brothers, M.A., DeLisle, D.M., and Worland, S.T. 1999, Structure-assisted design of mechanism-based irreversible inhibitors of human rhinovirus 3C protease with potent antiviral activity against multiple rhinovirus sero-types. Proc Natl Acad Sci USA 96: 11000–11007.PubMedGoogle Scholar
  81. Mayer, C., Neubauer, D., Nchinda, A.T., Cencic, R., Trompf, K., and Skern, T. 2008, Residue L143 of the foot-and-mouth disease virus leader proteinase is a determinant of cleavage specificity. J Virol 82: 4656–4659.PubMedGoogle Scholar
  82. McErlean, P., Shackelton, L.A., Lambert, S.B. Nissen, M.D., Sloots, T.P., and Mackay, I.M. 2007, Characterisation of a newly identified human rhinovirus, HRV-QPM, discovered in infants with bronchiolitis. J Clin Virol 39: 67–75.PubMedGoogle Scholar
  83. Moerke, N.J., Aktas, H., Chen, H., Cantel, S., Reibarkh, M.Y., Fahmy, A., Gross, J.D., Degterev, A., Yuan, J., Chorev, M., Halperin, J.A., and Wagner, G. 2007, Small-molecule inhibition of the interaction between the translation initiation factors eIF4E and eIF4G. Cell 128: 257–267.PubMedGoogle Scholar
  84. Morace, G., Kusov, Y., Dzagurov, G., Beneduce, F., and Gauss-Muller, V. 2008, The unique role of domain 2A of the hepatitis A virus precursor polypeptide P1-2A in viral morphogenesis. BMB Rep 41: 678–683.PubMedGoogle Scholar
  85. Morley, S.J., Curtis, P.S., and Pain, V.M. 1997, eIF4G: translation's mystery factor begins to yield its secrets. RNA 3: 1085–1104.PubMedGoogle Scholar
  86. Mosimann, S.C., Cherney, M.M., Sia, S., Plotch, S., and James, M.N.G. 1997, Refined X-ray crystallographic structure of the poliovirus 3C gene product. J Mol Biol 273: 1032–1047.PubMedGoogle Scholar
  87. Neznanov, N., Chumakov, K.M., Neznanova, L., Almasan, A., Banerjee, A.K., and Gudkov, A.V. 2005, Proteolytic cleavage of the p65-RelA subunit of NF-kappaB during poliovirus infection. J Biol Chem 280: 24153–24158.PubMedGoogle Scholar
  88. N.R.C. Committee on Development of a Polio Antiviral and Its Potential Role in Global Poliomyelitis Eradication. 2006, Exploring the Role of Antiviral Drugs in the Eradication of Polio: Workshop Report, The National Academies Press, Washington, DC.Google Scholar
  89. Ohlenschlager, O., Wohnert, J., Bucci, E., Seitz, S., Hafner, S., Ramachandran, R., Zell, R., and Gorlach, M. 2004, The structure of the stemloop D subdomain of coxsackievirus B3 cloverleaf RNA and its interaction with the proteinase 3C. Structure 12: 237–248.PubMedGoogle Scholar
  90. Park, N., Katikaneni, P., Skern, T., and Gustin, K.E. 2008, Differential targeting of nuclear pore complex proteins in poliovirus-infected cells. J Virol 82: 1647–1655PubMedGoogle Scholar
  91. Patick, A.K. 2006, Rhinovirus chemotherapy. Antiviral Res 71: 391–396.PubMedGoogle Scholar
  92. Patick, A.K., Brothers, M.A., Maldonado, F., Binford, S., Maldonado, O., Fuhrman, S., Petersen, A., Smith, 3rd, G.A., Zalman, L.S., Burns-Naas, L.A., and Tran, J.Q. 2005, In vitro antiviral activity and single-dose pharmacokinetics in humans of a novel, orally bioavailable inhibitor of human rhinovirus 3C protease. Antimicrob Agents Chemother 49: 2267–2275.PubMedGoogle Scholar
  93. Pelham, H.R.B. 1978, Translation of encephalomyocarditis virus RNA in vitro yields an active proteolytic processing enzyme. Eur J Biochem 85: 457–462.PubMedGoogle Scholar
  94. Perera, R., Daijogo, S., Walter, B.L., Nguyen, J.H., and Semler, B.L. 2007, Cellular protein modification by poliovirus: the two faces of poly(rC)-binding protein. J Virol 81: 8919–8932.PubMedGoogle Scholar
  95. Peters, H., Kusov, Y.Y., Meyer, S., Benie, A.J., Bauml, E., Wolff, M., Rademacher, C., Peters, T., and Gauss-Muller, V. 2005, Hepatitis A virus proteinase 3C binding to viral RNA: correlation with substrate binding and enzyme dimerization. Biochem J 385: 363–370.PubMedGoogle Scholar
  96. Petersen, J.F., Cherney, M.M., Liebig, H.-D., Skern, T., Kuechler, E., and James, M.N. 1999, The structure of the 2A proteinase from a common cold virus: a proteinase responsible for the shut-off of host-cell protein synthesis. EMBO J 18: 5463–5475.PubMedGoogle Scholar
  97. Racaniello, V.R. 2007, Picornaviridae: The viruses and their replication. In B.N. Fields, D.M. Knipe, and P.M. Howley (Eds.), Fields Virology, Lippincott Williams & Wilkins, Philadelphia, PA, pp. 795–838.Google Scholar
  98. Renwick, N., Schweiger, B., Kapoor, V., Liu, Z., Villari, J., Bullmann, R., Miething, R., Briese, T., and Lipkin, W.I. 2007, A recently identified rhinovirus genotype is associated with severe respiratory-tract infection in children in Germany. J Infect Dis 196: 1754–1760.PubMedGoogle Scholar
  99. Robertson, S.E., Chan, C., Kim-Farley, R., and Ward, N. 1990, Worldwide status of poliomyelitis in 1986, 1987 and 1988, and plans for its global eradication by the year 2000. World Health Stat Q43: 80–90.Google Scholar
  100. Sarkany, Z. and Polgar, L. 2003, The unusual catalytic triad of poliovirus protease 3C. Biochemistry 42: 516–522.PubMedGoogle Scholar
  101. Savolainen, C., Blomqvist, S., Mulders, M.N., and Hovi, T. 2002, Genetic clustering of all 102 human rhinovirus prototype strains: serotype 87 is close to human enterovirus 70. J Gen Virol 83: 333–340.PubMedGoogle Scholar
  102. Seipelt, J., Liebig, H.D., Sommergruber, W., Gerner, C., and Kuechler, E. 2000, 2A proteinase of human rhinovirus cleaves cytokeratin 8 in infected HeLa cells. J Biol Chem 275: 20084–20089.PubMedGoogle Scholar
  103. Semler, B.L. 2005, Resistance is futile. Nat Genet 37: 665–666.PubMedGoogle Scholar
  104. Semler, B.L. and Wimmer, E. 2002, Molecular Biology of Picornaviruses, ASM Press, Washington, DCGoogle Scholar
  105. Skern, T., Sommergruber, W., Blaas, D., Gruendler, P., Frauendorfer, F., Pieler, C., Fogy, I., and Kuechler, E. 1985, Human rhinovirus 2: complete nucleotide sequence and proteolytic processing signals in the capsid protein region. Nucl Acids Res 13: 2111–2126.PubMedGoogle Scholar
  106. Skern, T., Sommergruber, W., Auer, H., Volkmann, P., Zorn, M., Liebig, H.-D., Fessl, F., Blaas, D., and Kuechler, E. 1991, Substrate requirements of a human rhinoviral 2A proteinase. Virology 181: 46–54.PubMedGoogle Scholar
  107. Skern, T., Fita, I., and Guarne, A. 1998, A structural model of picornavirus leader proteinases based on papain and bleomycin hydrolase. J Gen Virol 79: 301–307.PubMedGoogle Scholar
  108. Skern, T., Hampoelz, B., Guarné, A., Fita, I., Bergmann, E., Petersen, J., and James, M.N.G. 2002, Structure and function of picornavirus proteinases. In B.L. Semler, and E. Wimmer (Eds.), Molecular Biology of Picornaviruses, ASM Press, Washington, DC, pp. 199–212.Google Scholar
  109. Sommergruber, W., Zorn, M., Blaas, D., Fessl, F., Volkmann, P., Maurer-Fogy, I., Pallai, P., Merluzzi, V., Matteo, M., Skern, T., et al. 1989, Polypeptide 2A of human rhinovirus type 2: identification as a protease and characterization by mutational analysis. Virology 169: 68–77.PubMedGoogle Scholar
  110. Sousa, C., Schmid, E.M., and Skern, T. 2006, Defining residues involved in human rhinovirus 2A proteinase substrate recognition. FEBS Lett 580: 5713–5717.PubMedGoogle Scholar
  111. Strebel, K. and Beck, E. 1986, A second protease of foot-and mouth disease virus. J Virol 58: 893–899.PubMedGoogle Scholar
  112. Svitkin, Y.V., Gradi, A., Imataka, H., Morino, S., and Sonenberg, N. 1999, Eukaryotic initiation factor 4GII (eIF4GII), but not eIF4GI, cleavage correlates with inhibition of host cell protein synthesis after human rhinovirus infection. J Virol 73: 3467–3472.PubMedGoogle Scholar
  113. Sweeney, T.R., Roque-Rosell, N., Birtley, J.R., Leatherbarrow, R.J., and Curry, S. 2007, Structural and mutagenic analysis of foot-and-mouth disease virus 3C protease reveals the role of the beta-ribbon in proteolysis. J Virol 81: 115–124.PubMedGoogle Scholar
  114. Tesar, M. and Marquardt, O. 1990, Foot-and-mouth disease virus protease 3C inhibits cellular transcription and mediates cleavage of histone H3. Virology 174: 364–374.PubMedGoogle Scholar
  115. Thomson, G.R., Vosloo, W., and Bastos, A.D. 2003, Foot and mouth disease in wildlife. Virus Res 91: 145–161.PubMedGoogle Scholar
  116. Toyoda, H., Nicklin, M.J., Murray, M.G., Anderson, C.W., Dunn, J.J., Studier, F.W., and Wimmer, E. 1986, A second virus-encoded proteinase involved in proteolytic processing of poliovirus polyprotein. Cell 45: 761–770.PubMedGoogle Scholar
  117. Turner, R.B. 2007, Rhinovirus: more than just a common cold virus. J Infect Dis 195: 765–766.PubMedGoogle Scholar
  118. Ventoso, I., MacMillan, S.E., Hershey, J.W., and Carrasco, L. 1998, Poliovirus 2A proteinase cleaves directly the eIF-4G subunit of eIF-4F complex. FEBS Lett 435: 79–83.PubMedGoogle Scholar
  119. Wells, J.C. and McClendon, C.L. 2007, Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature 450: 1001–1009.PubMedGoogle Scholar
  120. Witherell, G. 2000, AG-7088 Pfizer. Curr Opin Investig Drugs 1: 297–302.PubMedGoogle Scholar
  121. Yalamanchili, P., Banerjee, R., and Dasgupta, A. 1997, Poliovirus-encoded protease 2APro cleaves the TATA-binding protein but does not inhibit host cell RNA polymerase II transcription in vitro. J Virol 71: 6881–6886.PubMedGoogle Scholar
  122. Yin, J., Bergmann, E.M., Cherney, M.M., Lall, M.S., Jain, R.P., Vederas, J.C., and James, M.N. 2005, Dual modes of modification of hepatitis A virus 3C protease by a serine-derived beta-lactone: selective crystallization and formation of a functional catalytic triad in the active site. J Mol Biol 354: 854–871.PubMedGoogle Scholar
  123. Yoneyama, T., Yoshida, H., Shimizu, H., Yoshii, K., Nagata, N., Kew, O., and Miyamura, T. 2001, Neurovirulence of sabin 1-derived polioviruses isolated from an immunodeficient patient with prolonged viral excretion. Dev Biol (Basel) 105: 93–98.Google Scholar
  124. Ypma-Wong, M.F., Dewalt, P.G., Johnson, V.H., Lamb, J.G., and Semler, B.L. 1988, Protein 3CD is the major poliovirus proteinase responsible for cleavage of the P1 capsid precursor. Virology 166: 265–270.PubMedGoogle Scholar
  125. Zell, R., Sidigi, K., Bucci, E., Stelzner, A., and Gorlach, M. 2002, Determinants of the recognition of enteroviral cloverleaf RNA by coxsackievirus B3 proteinase 3C. RNA 8: 188–201.PubMedGoogle Scholar
  126. Zhang, B., Morace, G., Gauss-Muller, V., and Kusov, Y. 2007, Poly(A) binding protein, C-terminally truncated by the hepatitis A virus proteinase 3C, inhibits viral translation. Nucleic Acids Res 35: 5975–5984.PubMedGoogle Scholar
  127. Zhang, B., Seitz, S., Kusov, Y., Zell, R., and Gauss-Muller, V. 2007, RNA interaction and cleavage of poly(C)-binding protein 2 by hepatitis A virus protease. Biochem Biophys Res Commun 364: 725–730.PubMedGoogle Scholar
  128. Ziegler, E., Borman, A.M., Deliat, F.G., Liebig, H.-D., Jugovic, D., Kean, K.M., Skern, T., and Kuechler, E. 1995, Picornavirus 2A proteinase-mediated stimulation of internal initiation of translation is dependent on enzymatic activity and the cleavage products of cellular proteins. Virology 213: 549–557.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • David Neubauer
    • 1
  • Jutta Steinberger
    • 1
  • Tim Skern
    • 1
  1. 1.Max F. Perutz LaboratoriesMedical University of ViennaViennaAustria

Personalised recommendations