Study of Inhibitors Against SARS Coronavirus by Computational Approaches

  • Kuo-Chen Chou
  • Dong-Qing Wei
  • Qi-Shi Du
  • Suzanne Sirois
  • Hong-Bin Shen
  • Wei-Zhu Zhong
Part of the Proteases in Biology and Disease book series (PBAD, volume 8)

Called by many as the biology's version of Swiss army knives, proteases cut long sequences of amino acids into fragments and regulate most physiological processes. They are vitally important in life cycle and have become a main target for drug design. This Chapter is focused on a special protease that plays a key role in replicating SARS (Severe Acute Respiratory Syndrome) coronavirus, the culprit of SARS disease. The progresses reported here are mainly from various computational approaches, such as structural bioinformatics, pharmacophore modelling, molecular docking, and peptide-cleavage site prediction, among others. It is highlighted that the compounds C28H34O4N7Cl, C21H36O5N6 and C21H36O5N6, as well as KZ7088, a derivative of AG7088, might be the promising candidates for further investigation, and that the octapeptides ATLQAIAS and ATLQAENV, as well as AVLQSGFR, might be converted to effective inhibitors against the SARS protease. Meanwhile, how to modify these octapeptides based on the “distorted key” theory to make them become potent inhibitors is explicitly elucidated. Also, a brief introduction is given for how to use computer-generated graphs to rapidly diagnose SARS coronavirus. Finally, a step-by-step protocol guide is given on how to use ProtIdent, a web-server developed recently, to identify the proteases and their types based on their sequence information alone. ProtIdent is a very user-friendly bioin-formatics tool that can provide desired information for both basic research and drug discovery in a timely manner. With the avalanche of protein sequences generated in the post-genomic age, it is particularly useful. ProtIdent is freely accessible to the public via the web-site at


SARS coronavirus proteinase KZ7088 AG7088 binding pocket octapeptide inhibitors distorted key theory ProtIdent web server 


  1. Adessi, C. and Soto, C. 2002, Converting a peptide into a drug: strategies to improve stability and bioavailability. Curr Med Chem, 9, 963–978.PubMedCrossRefGoogle Scholar
  2. Anand, K., Ziebuhr, J., Wadhwani, P., Mesters, J.R. and Hilgenfeld, R. 2003, Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science, 300, 1763–1767.PubMedCrossRefGoogle Scholar
  3. Baurin, N. 2002, Etude et développement de techniques QSAR pour la recherche de molécules d'intérêts thérapeutique. Criblage virtuel et Analyse de chmiothèque, Université d'Orléans.Google Scholar
  4. Benkirane, N., Guichard, G., Briand, J.P. and Muller, S. 1996, Exploration of requirements for peptidomimetic immune recognition. Antigenic and immunogenic properties of reduced pep-tide bond pseudopeptide analogues of a histone hexapeptide. J Biol Chem, 271, 33218–33224.PubMedCrossRefGoogle Scholar
  5. Cai, Y.D. and Chou, K.C. 1998, Artificial neural network model for HIV protease cleavage sites in proteins. Adv Eng Softw, 29, 119–128.CrossRefGoogle Scholar
  6. Chen, L.L., Ou, H.Y., Zhang, R. and Zhang, C.T. 2003, ZCURVE_CoV: a new system to recognize protein coding genes in coronavirus genomes, and its applications in analyzing SARS-CoV genomes. Biochem Biophys Res Commun, 307, 382–388.PubMedCrossRefGoogle Scholar
  7. Chou, J.J. 1993a, Predicting cleavability of peptide sequences by HIV protease via correlation-angle approach. J Protein Chem, 12, 291–302.CrossRefGoogle Scholar
  8. Chou, K.C. 1993b, A vectorized sequence-coupling model for predicting HIV protease cleavage sites in proteins. J Biol Chem, 268, 16938–16948.Google Scholar
  9. Chou, K.C. 1996, Review: prediction of HIV protease cleavage sites in proteins. Analyt Biochem, 233, 1–14.PubMedCrossRefGoogle Scholar
  10. Chou, K.C. 2004a, Molecular therapeutic target for type-2 diabetes. J Proteome Res, 3, 1284–1288.CrossRefGoogle Scholar
  11. Chou, K.C. 2004b, Review: structural bioinformatics and its impact to biomedical science. Curr Med Chem, 11, 2105–2134.Google Scholar
  12. Chou, K.C. 2004c, Insights from modelling the 3D structure of the extracellular domain of alpha7 nicotinic acetylcholine receptor. Biochem Biophys Res Commun, 319, 433–438.CrossRefGoogle Scholar
  13. Chou, K.C. 2005a, Coupling interaction between thromboxane A2 receptor and alpha-13 subunit of guanine nucleotide-binding protein. J Proteome Res, 4, 1681–1686.CrossRefGoogle Scholar
  14. Chou, K.C. 2005b, Modeling the tertiary structure of human cathepsin-E. Biochem Biophys Res Commun, 331, 56–60.CrossRefGoogle Scholar
  15. Chou, K.C. and Howe, W.J. 2002, Prediction of the tertiary structure of the beta-secretase zymogen. Biochem Biophys Res Commun, 292, 702–708.PubMedCrossRefGoogle Scholar
  16. Chou, K.C. and Shen, H.B. 2008, ProtIdent: a web server for identifying proteases and their types by fusing functional domain and sequential evolution information. Biochem Biophys Res Commun, 376, 321–325.PubMedCrossRefGoogle Scholar
  17. Chou, K.C., Zhang, C.T. and Kezdy, F.J. 1993, A vector approach to predicting HIV protease cleavage sites in proteins. Proteins: Struct Funct Genet, 16, 195–204.CrossRefGoogle Scholar
  18. Chou, K.C., Tomasselli, A.L., Reardon, I.M. and Heinrikson, R.L. 1996, Predicting HIV protease cleavage sites in proteins by a discriminant function method. Proteins: Struct Funct Genet, 24, 51–72.CrossRefGoogle Scholar
  19. Chou, K.C., Jones, D. and Heinrikson, R.L. 1997, Prediction of the tertiary structure and substrate binding site of caspase-8. FEBS Lett, 419, 49–54.PubMedCrossRefGoogle Scholar
  20. Chou, K.C., Watenpaugh, K.D. and Heinrikson, R.L. 1999, A Model of the complex between cyclin- dependent kinase 5(Cdk5) and the activation domain of neuronal Cdk5 activator. Biochem Biophys Res Commun, 259, 420–428.PubMedCrossRefGoogle Scholar
  21. Chou, K.C., Tomasselli, A.G. and Heinrikson, R.L. 2000, Prediction of the tertiary structure of a caspase-9/inhibitor complex. FEBS Lett, 470, 249–256.PubMedCrossRefGoogle Scholar
  22. Chou, K.C., Wei, D.Q. and Zhong, W.Z. 2003, Binding mechanism of coronavirus main protein-ase with ligands and its implication to drug design against SARS. (Erratum: ibid., 2003, 310, 675). Biochem Biophys Res Commun, 308, 148–151.PubMedCrossRefGoogle Scholar
  23. Clercq, E.D. 2006, Potential antivirals and antiviral strategies against SARS coronavirus infections. Expert Rev Anti-infect Ther, 4, 291–302.PubMedCrossRefGoogle Scholar
  24. Connolly, M.L. 1993, The molecular surface package. J Mol Graph, 11, 139–141.PubMedCrossRefGoogle Scholar
  25. Du, Q.S., Wang, S.Q., Wei, D.Q., Zhu, Y., Guo, H., Sirois, S. and Chou, K.C. 2004, Polyprotein Cleavage Mechanism of SARS CoV Mpro and Chemical Modification of Octapeptide. Peptides, 25, 1857–1864.PubMedCrossRefGoogle Scholar
  26. Du, Q.S., Wang, S., Wei, D.Q., Sirois, S. and Chou, K.C. 2005a, Molecular modelling and chemical modification for finding peptide inhibitor against SARS CoV Mpro. Analyt Biochem, 337, 262–270.CrossRefGoogle Scholar
  27. Du, Q.S., Wang, S.Q., Jiang, Z.Q., Gao, W.N., Li, Y.D., Wei, D.Q. and Chou, K.C. 2005b, Application of bioinformatics in search for cleavable peptides of SARS-CoV Mpro and chemical modification of octapeptides. Med Chem, 1, 209–213.CrossRefGoogle Scholar
  28. Du, Q.S., Wang, S.Q. and Chou, K.C. 2007a, Analogue inhibitors by modifying oseltamivir based on the crystal neuraminidase structure for treating drug-resistant H5N1 virus. Biochem Biophys Res Commun, 362, 525–531.CrossRefGoogle Scholar
  29. Du, Q.S., Sun, H. and Chou, K.C. 2007b, Inhibitor design for SARS coronavirus main protease based on “distorted key theory”. Med Chem, 3, 1–6.CrossRefGoogle Scholar
  30. Gan, Y.R., Huang, H., Huang, Y.D., Rao, C.M., Zhao, Y., Liu, J.S., Wu, L. and Wei, D.Q. 2006, Synthesis and activity assess of an octapeptide inhibitor designed for SARS coronavirus main proteinase. Peptides, 27, 622–625.PubMedCrossRefGoogle Scholar
  31. Gao, F., Ou, H.Y., Chen, L.L., Zheng, W.X. and Zhang, C.T. 2003, Prediction for proteinase cleavage sites in polyproteins of coronaviruses and its applications in analyzing SARS-CoV genomes. FEBS Letters, 553, 451–456.PubMedCrossRefGoogle Scholar
  32. Gao, L., Ding, Y.S., Dai, H., Shao, S.H., Huang, Z.D. and Chou, K.C. 2006, A novel fingerprint map for detecting SARS-CoV. J Pharmaceut Biomed Analysis, 41, 246–250.CrossRefGoogle Scholar
  33. Gao, W.N., Wei, D.Q., Li, Y., Gao, H., Xu, W.R., Li, A.X. and Chou, K.C. 2007, Agaritine and its derivatives are potential inhibitors against HIV proteases. Med Chem, 3, 221–226.PubMedCrossRefGoogle Scholar
  34. Gong, K., Li, L., Wang, J.F., Cheng, F., Wei, D.Q. and Chou, K.C. 2009, Binding mechanism of H5N1 influenza virus neuraminidase with ligands and its implication for drug design. Med Chem, in press.Google Scholar
  35. Graham, S.L., deSolms, S.J., Giuliani, E.A., Kohl, N.E., Mosser, S.D., Oliff, A.I., Pompliano, D.L., Rands, E., Breslin, M.J., Deana, A.A. et al. 1994, Pseudopeptide inhibitors of Ras farnesyl-protein transferase. J Med Chem, 37, 725–732.PubMedCrossRefGoogle Scholar
  36. Gu, R.X., Gu, H., Xie, Z.Y., Wang, J.F., Arias, H.R., Wei, D.Q. and Chou, K.C. 2009, Possible drug candidates for Alzheimer's disease deduced from studying their binding interactions with alpha7 nicotinic acetylcholine receptor. Med Chem, in press.Google Scholar
  37. Guo, X.L., Li, L., Wei, D.Q., Zhu, Y.S. and Chou, K.C. 2008, Cleavage mechanism of the H5N1 hemagglutinin by trypsin and furin. Amino Acids, 35, 375–382.PubMedCrossRefGoogle Scholar
  38. Kesel, A.J. 2005, Synthesis of novel test compounds for antiviral chemotherapy of severe acute respiratory syndrome (SARS). Curr Med Chem, 12, 2095–2162.PubMedCrossRefGoogle Scholar
  39. Li, L., Wei, D.Q., Wang, J.F. and Chou, K.C. 2007a, Computational studies of the binding mechanism of calmodulin with chrysin. Biochem Biophys Res Comm, 358, 1102–1107.CrossRefGoogle Scholar
  40. Li, Y., Wei, D.Q., Gao, W.N., Gao, H., Liu, B.N., Huang, C.J., Xu, W.R., Liu, D.K., Chen, H.F. and Chou, K.C. 2007b, Computational approach to drug design for oxazolidinones as antibacterial agents. Med Chem, 3, 576–582.CrossRefGoogle Scholar
  41. Liang, G.Z. and Li, S.Z. 2007, A new sequence representation as applied in better specificity elucidation for human immunodeficiency virus type 1 protease. Biopolymers, 88, 401–412.PubMedCrossRefGoogle Scholar
  42. Lipinski, C.A. 2000, Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods, 44, 235–249.PubMedCrossRefGoogle Scholar
  43. Lowther, W.T., Majer, P. and Dunn, B.M. 1995, Engineering the substrate specificity of rhizo-puspepsin: the role of Asp 77 of fungal aspartic proteinases in facilitating the cleavage of oligopeptide substrates with lysine in P1. Protein Sci, 4, 689–702.PubMedCrossRefGoogle Scholar
  44. Miller, M., Schneider, J., Sathyanarayana, B.K., Toth, M.V., Marshall, G.R., Clawson, L., Selk, L., Kent, S.B. and Wlodawer, A. 1989, Structure of complex of synthetic HIV-1 protease with a substrate-based inhibitor at 2.3 A resolution. Science, 246, 1149–1152.PubMedCrossRefGoogle Scholar
  45. Oprea, T.I. 2000, Property distribution of drug-related chemical databases. J Comput Aided Mol Des, 14, 251–264.PubMedCrossRefGoogle Scholar
  46. Peiris, J.S., Chu, C.M., Cheng, V.C., Chan, K.S., Hung, I.F., Poon, L.L., Law, K.I., Tang, B.S., Hon, T.Y., Chan, C.S. et al. 2003, Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet, 361, 1767–1772.PubMedCrossRefGoogle Scholar
  47. Poorman, R.A., Tomasselli, A.G., Heinrikson, R.L. and Kezdy, F.J. 1991, A cumulative specificity model for proteases from human immunodeficiency virus types 1 and 2, inferred from statistical analysis of an extended substrate data base. J Biol Chem, 266, 14554–14561.PubMedGoogle Scholar
  48. Rishton, G.M. 1997, Reactive compounds and in vitro false positives in HTS. Drug Discovery Today, 2, 382–384.CrossRefGoogle Scholar
  49. Rognvaldsson, T., You, L. and Garwicz, D. 2007, Bioinformatic approaches for modeling the substrate specificity of HIV-1 protease: an overview. Expert Rev Mol Diagn, 7, 435–451.PubMedCrossRefGoogle Scholar
  50. Samee, W. 2005, Severe acute respiratory syndrome coronavirus (SARS-CoV) protease inhibitors. J Club Pharm Chem Pharmacognosy, January, 1–12.Google Scholar
  51. Schechter, I. and Berger, A. 1967, On the size of the active site in protease. I. Papain. Biochem Biophys Res Comm, 27, 157–162.PubMedCrossRefGoogle Scholar
  52. Schnell, J.R. and Chou, J.J. 2008, Structure and mechanism of the M2 proton channel of influenza A virus. Nature, 451, 591–595.PubMedCrossRefGoogle Scholar
  53. Shen, H.B. and Chou, K.C. 2008, HIVcleave: a web-server for predicting HIV protease cleavage sites in proteins. Analyt Biochem, 375, 388–390.PubMedCrossRefGoogle Scholar
  54. Sirois, S., Wei, D.Q., Du, Q.S. and Chou, K.C. 2004, Virtual Screening for SARS-CoV protease based on KZ7088 pharmacophore points. J Chem Inf Comput Sci, 44, 1111–1122.PubMedGoogle Scholar
  55. Szelke, M., Leckie, B.J., Tree, M., Brown, A., Grant, J., Hallett, A., Hughes, M., Jones, D.M. and Lever, A.F. 1982, A potent new renin inhibitor. In vitro and in vivo studies. Hypertension, 4, 59.PubMedGoogle Scholar
  56. Thompson, T.B., Chou, K.C. and Zheng, C. 1995, Neural network prediction of the HIV-1 protease cleavage sites. J Theoret Biol, 177, 369–379.CrossRefGoogle Scholar
  57. Venkatesan, N., Kim, B.H. 2002, Synthesis and enzyme inhibitory activities of novel peptide isosteres. Curr Med Chem, 9, 2243–2270.PubMedGoogle Scholar
  58. Wang, J.F., Wei, D.Q., Li, L., Zheng, S.Y., Li, Y.X. and Chou, K.C. 2007a, 3D structure modeling of cytochrome P450 2C19 and its implication for personalized drug design Biochem Biophys Res Commun (Corrigendum: ibid, 2007, Vol357, 330) 355 513–519.CrossRefGoogle Scholar
  59. Wang, J.F., Wei, D.Q., Lin, Y., Wang, Y.H., Du, H.L., Li, Y.X. and Chou, K.C. 2007b, Insights from modeling the 3D structure of NAD(P)H-dependent D-xylose reductase of Pichia stipi-tis and its binding interactions with NAD and NADP. Biochem Biophys Res Comm, 359, 323–329.CrossRefGoogle Scholar
  60. Wang, S.Q., Du, Q.S., Zhao, K., Li, A.X., Wei, D.Q. and Chou, K.C. 2007c, Virtual screening for finding natural inhibitor against cathepsin-L for SARS therapy. Amino Acids, 33, 129–135.CrossRefGoogle Scholar
  61. Wang, S.Q., Du, Q.S. and Chou, K.C. 2007d, Study of drug resistance of chicken influenza A virus (H5N1) from homology-modeled 3D structures of neuraminidases. Biochem Biophys Res Comm, 354, 634–640.CrossRefGoogle Scholar
  62. Wang, J.F., Wei, D.Q., Chen, C., Li, Y. and Chou, K.C. 2008, Molecular modeling of two CYP2C19 SNPs and its implications for personalized drug design. Protein Pept Lett, 15, 27–32.PubMedCrossRefGoogle Scholar
  63. Wang, M., Yao, J.S., Huang, Z.D., Xu, Z.J., Liu, G.P., Zhao, H.Y., Wang, X.Y., Yang, J., Zhu, Y.S. and Chou, K.C. 2005, A new nucleotide-composition based fingerprint of SARS-CoV with visualization analysis. Med Chem, 1, 39–47.PubMedCrossRefGoogle Scholar
  64. Wei, D.Q., Sirois, S., Du, Q.S., Arias, H.R. and Chou, K.C. 2005, Theoretical studies of Alzheimer's disease drug candidate [(2,4-dimethoxy) benzylidene]-anabaseine dihydrochlo-ride (GTS-21) and its derivatives. BBRC, 338, 1059–1064.PubMedGoogle Scholar
  65. Wei, D.Q., Du, Q.S., Sun, H. and Chou, K.C. 2006a, Insights from modeling the 3D structure of H5N1 influenza virus neuraminidase and its binding interactions with ligands. Biochem Biophys Res Comm, 344, 1048–1055.CrossRefGoogle Scholar
  66. Wei, D.Q., Zhang, R., Du, Q.S., Gao, W.N., Li, Y., Gao, H., Wang, S.Q., Zhang, X., Li, A.X., Sirois, S. et al. 2006b, Anti-SARS drug screening by molecular docking. Amino Acids, 31, 73–80.CrossRefGoogle Scholar
  67. Wei, H., Zhang, R., Wang, C., Zheng, H., Chou, K.C. and Wei, D.Q. 2007, Molecular insights of SAH enzyme catalysis and their implication for inhibitor design. J Theoret Biol, 244, 692–702.CrossRefGoogle Scholar
  68. Wolfram, S. 1984, Cellular automation as models of complexity. Nature, 311, 419–424.CrossRefGoogle Scholar
  69. Wolfram, S. 2002, A New Kind of Science. Wolfram Media, Champaign, IL.Google Scholar
  70. Wu, Y.S., Lin, W.H., Hsu, J.T. and Hsieh, H.P. 2006, Antiviral drug discovery against SARS-CoV. Curr Med Chem, 13, 2003–2020.PubMedCrossRefGoogle Scholar
  71. Xu, J. and Stevenson, J. 2000, Drug-like index: a new approach to measure drug-like compounds and their diversity. J Chem Inf Comput Sci, 40, 1177–1187.PubMedGoogle Scholar
  72. Yang, H., Yang, M., Ding, Y., Liu, Y., Lou, Z., Zhou, Z., Sun, L., Mo, L., Ye, S., Pang, H. et al. 2003, The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor. Proc Natl Acad Sci USA, 100, 13190–13195.PubMedCrossRefGoogle Scholar
  73. You, L., Garwicz, D. and Rognvaldsson, T. 2005, Comprehensive bioinformatic analysis of the specificity of human immunodeficiency virus type 1 protease. J Virol, 79, 12477–12486.PubMedCrossRefGoogle Scholar
  74. Zhang, C.T. and Chou, K.C. 1993, An alternate-subsite-coupled model for predicting HIV protease cleavage sites in proteins. Protein Eng, 7, 65–73.CrossRefGoogle Scholar
  75. Zhang, R., Wei, D.Q., Du, Q.S. and Chou, K.C. 2006, Molecular modeling studies of peptide drug candidates against SARS. Med Chem, 2, 309–314.PubMedCrossRefGoogle Scholar
  76. Zhang, X.W. and Yap, Y.L. 2004, Exploring the binding mechanism of the main proteinase in SARS-associated coronavirus and its implication to anti-SARS drug design. Bioorg Med Chem, 12, 2219–2223.PubMedCrossRefGoogle Scholar
  77. Zheng, H., Wei, D.Q., Zhang, R., Wang, C., Wei, H. and Chou, K.C. 2007, Screening for new agonists against Alzheimer's disease. Med Chem, 3, 488–493.PubMedCrossRefGoogle Scholar
  78. Zhou, G.P. and Troy, F.A., 2nd ed. 2003, Characterization by NMR and molecular modeling of the binding of polyisoprenols and polyisoprenyl recognition sequence peptides: 3D structure of the complexes reveals sites of specific interactions. Glycobiology, 13, 51–71.PubMedCrossRefGoogle Scholar
  79. Zhou, G.P. and Troy, F.A., 2nd ed. 2005a, NMR study of the preferred membrane orientation of polyisoprenols (dolichol) and the impact of their complex with polyisoprenyl recognition sequence peptides on membrane structure. Glycobiology, 15, 347–359.Google Scholar
  80. Zhou, G.P. and Troy, F.A. 2005b, NMR studies on how the binding complex of polyisoprenol recognition sequence peptides and polyisoprenols can modulate membrane structure. Curr Protein Peptide Sci, 6, 399–411.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Kuo-Chen Chou
    • 1
    • 2
    • 3
    • 4
  • Dong-Qing Wei
    • 1
    • 2
  • Qi-Shi Du
    • 1
    • 3
  • Suzanne Sirois
    • 1
    • 5
  • Hong-Bin Shen
    • 1
    • 4
  • Wei-Zhu Zhong
    • 1
  1. 1.Gordon Life Science InstituteSan DiegoUSA
  2. 2.College of Life Science and TechnologyShanghai Jiaotong UniversityShanghaiChina
  3. 3.College of Life Science and BiotechnologyGuangxi UniversityNanningChina
  4. 4.Institute of Image Processing & Pattern RecognitionShanghai Jiaotong UniversityShanghaiChina
  5. 5.Chemistry DepartmentUniversité du Québec à Montréal (UQAM)MontréalCanada

Personalised recommendations