Nitric Oxide in the Solitary Tract Nucleus (STn) Modulates Glucose Homeostasis and FOS-ir Expression After Carotid Chemoreceptor Stimulation

  • M. Lemus
  • S. Montero
  • S. Luquín
  • J. García
  • E. Roces De Álvarez-Buylla
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 648)


We evaluate in rats the role of NO in the solitary tract nucleus (STn) after an anoxic stimulus to carotid body chemoreceptor cells (CChrc) with cyanide (NaCN), on the hyperglycemic reflex with glucose retention by the brain (BGR) and FOS expression (FOS-ir) in the STn. The results suggest that nitroxidergic pathways in the STn may play an important role in glucose homeostasis. A NO donor such as sodium nitroprusside (NPS) in the STn before CChrc stimulation increased arterial glucose level and significantly decreased BGR. NPS also induced a higher FOS-ir expression in STn neurons when compared to neurons in control rats that only received artificial cerebrospinal fluid (aCSF) before CChrc stimulation. In contrast, a selective NOS inhibitor such as Nω-nitro-L-arginine methyl ester (L-NAME) in the STn before CChrc stimulation resulted in an increase of both, systemic glucose and BGR above control values. In this case, the number of FOS-ir positive neurons in the STn decreased when compared to control or to NPS experiments. FOS-ir expression in brainstem cells suggests that CChrc stimulation activates nitroxidergic pathways in the STn to regulate peripheral and central glucose homeostasis. The study of these functionally defined cells will be important to understand brain glucose homeostasis.


Nitric oxide solitary tract nucleus Glucose Sodium nitroprusside Fos Cerebrospinal fluid Carotid chemoreceptor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alcayaga, J., Barrios, M., Bustos, F., Miranda, G., Molina, M.J. & Iturriaga, R. 1999, Modulatory effect of nitric oxide on acetylcholine-induced activation of cat petrosal ganglion neurons in vitro, Brain Res. 825, 194–198.PubMedCrossRefGoogle Scholar
  2. Almeida, A., Cidad, P., Delgado-Esteban, M., Fernández, E., García-Nogales, P. & Bolaños J.P. 2005, Inhibition of mitochondrial respiration by nitric oxide: its role in glucose metabolism and neuroprotection, J Neurosci Res 79: 166–171PubMedCrossRefGoogle Scholar
  3. Álvarez-Buylla, R. & Álvarez-Buylla, E. 1988, Carotid sinus receptors participate in glucose homeostasis, Respir Physiol, 72: 347–360.PubMedCrossRefGoogle Scholar
  4. Álvarez-Buylla, R. & Roces de Álvarez-Buylla, E. 1975, Hypoglycemic conditioned reflex in rats: preliminary study of its mechanism, J Comp Physiol Psychol, 88: 155–160.PubMedCrossRefGoogle Scholar
  5. Brodsky, S.V., Gao, S., Li, H. & Goligorsky, M.S. 2002, Hyperglycemic switch from mitochondrial nitric oxide to superoxide production in endothelial cells, Am. J. Physiol Hear Cir Physiol, 283: H2130–H2139.Google Scholar
  6. Chan, S.H., Chang, K.F., Ou, C.C. & Chan, J.Y. 2004. Nitric oxide regulates c-fos expression in nucleus tractus solitarii induced by baroreceptor activation via cGMP-dependent protein kinase and cAMP response element-binding protein phosphorylation. Molec Pharmacol, 65, 319–25.CrossRefGoogle Scholar
  7. Dias, A.C., Vitela, M., Colombari, E. & Mifflin, S.W. 2005, Nitric oxide modulation of glutamatergic baroreflex, and cardiopulmonary transmission in the nucleus of the solitary tract, Amer J Physiol: Heart Cir Physiol, 288: H256–H262.CrossRefGoogle Scholar
  8. Housley, G.D. & Sinclair, J.D. 1988, Localization by kainic acid lesions of neurons P transmitting the carotid chemoreceptor stimulus for respiration in rat, J Physiol, 406: 99–114.PubMedGoogle Scholar
  9. Iturriaga, R., Villanueva, S. & Mosqueira, M. 2000, Dual effects of nitric oxide on cat carotid body chemoreception, J Appl Physiol, 89: 1005–1012.PubMedGoogle Scholar
  10. Kadowaki, K., Kishimoto, J., Leng, G. & Emson, P.C. 1994, Up-regulation of nitric oxide synthase (NOS) gene expression together with NOS activity in the rat hypothalamo-hypophyseal system after chronic salt loading: evidence of a neuromodulatory role of nitri oxide in arginine vasopressin and oxytocin secretion, Endocrinol, 134: 1011–1017.CrossRefGoogle Scholar
  11. Kobelt, P., Tebbe, J.J., Tjandra, I., Bae, H.G., Ruter, J., Klapp, B.F., Wiedenmann, B. & Monnikes, H. 2004, Two immunocytochemical protocols for immunofluorescent detection of c-Fos positive neurons in the rat brain, Brain Res Prot, 13: 45–52.CrossRefGoogle Scholar
  12. López-Barneo, J. 2003, Oxygen and glucose sensing by carotid body glomus cells, Curr Op Neurobiol, 13: 493–9.PubMedCrossRefGoogle Scholar
  13. Mifflin, S.W. 1996, Convergent carotid sinus nerve and superior laryngeal nerve afferent inputs to neurons in the NTS, Amer J Physiol, 271: R870–R880.PubMedGoogle Scholar
  14. Moncada, S., Palmer, R.M. & Higgs, E.A. 1991, Nitric oxide: physiology, pathophysiology and pharmacology, Pharmacol Rev, 43: 109–142.PubMedGoogle Scholar
  15. Montero, S., Cadenas, J.L., Lemus, M., Álvarez- Buylla, E. & Álvarez- Buylla, R. 2006, Nitric oxide in brain glucose retention after carotid body receptors stimulation with cyanide in rats, Adv Exp Med Biol, 580: 293–300.PubMedCrossRefGoogle Scholar
  16. Paxinos, G. & Watson, C. 1986, The rat brain in stereotactic coordinates, Academic Press, San. Diego.Google Scholar
  17. Prabhakar, N.R. 1994, Neurotransmitters in the carotid body, Adv Exp Med Biol, 360: 57–69.PubMedGoogle Scholar
  18. Sugimoto, Y., Yamada, J., Yoshikawa, T. & Horisaka, K. 1997, Inhibitory effects of nitric oxide synthase inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME), on 2-deoxy-D-glucose-induced hyperglycemia in rats, Biol Pharmacol Bull, 20: 1307–1309.Google Scholar
  19. Sunico, C.R., Portillo, F., González-Forero, D. & Moreno-López, B. 2005, Nitric oxide-directed synaptic remodeling in the adult mammal CNS, J Neurosci, 25: 1448–1458.PubMedCrossRefGoogle Scholar
  20. Talman, W.T., óDragon, D.N., óOhta, H., & óLin, L.H. 2001, Nitroxidergic influences on cardiovascular control by NTS: a link with glutamate, Ann New York Acad Sci, 940: 169–78.CrossRefGoogle Scholar
  21. Zhang, M., Buttigieg, J. & Nurse, C.A. 2007, Neurotransmitter mechanisms mediating low-glucose signalling in cocultures and fresh tissue slices of rat carotid body, J Physiol, 578: 735–750.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • M. Lemus
    • 1
  • S. Montero
    • 1
  • S. Luquín
    • 2
  • J. García
    • 3
  • E. Roces De Álvarez-Buylla
    • 4
  1. 1.Centro Universitario de Investigaciones BiomédicasUniversidad de ColimaColima, Col. 28045Mexico
  2. 2.Centro de Investigaciones de OccidenteIMSS GuadalajaraMexico
  3. 3.Facultad de MedicinaUniversidad de GuadalajaraGuadalajaraMéxico
  4. 4.Universidad de Colima Av. 25 de Julio S/N, Col. villas de San SebastiánCol. 28045 Mexico

Personalised recommendations