Advertisement

Glycoengineering and Modeling of Protein N-Glycosylation

  • Sandra V. Bennun
  • Frederick J. Krambeck
  • Michael J. Betenbaugh
Chapter
Part of the Cell Engineering book series (CEEN, volume 6)

Abstract

Abstract Glycoproteins for treating human diseases have revolutionized the health care industry. However, controlling glycosylation has been a challenge as small variations in glycan structure can be responsible for significant changes in key therapeutic properties. Manipulation of glycan biosynthesis can be particularly complex since the process is not directly encoded on the genome but depends on multiple variables such as enzymes’ activity, selectivity, localization, expression host, and process parameters and conditions. Furthermore, a particular glycoprotein may include many different glycan structures due to differences in processing that occur for each individual molecule. The present chapter focuses on experimental and computational approaches to direct N-glycosylation in expression systems for generation of biotherapeutics of superior value. Glycoengineering-based manipulations of glycan structures using glycosyltransferases, modification of precursor biosynthetic pathways, and predictions of glycosylation patterns using mathematical models are described including examples from the literature as a means of optimizing glycoform distributions in cells.

Keywords

Sialic Acid Chinese Hamster Ovary Cell Glycan Structure Sialic Acid Residue Baby Hamster Kidney 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by Award Number 5R41CA127885-02 from the National Cancer Institute.

References

  1. Apweiler R, Hermjakob H et al (1999) On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta – General Subjects 1473(1):4–8CrossRefGoogle Scholar
  2. Baker KN, Rendall MH et al (2001) Metabolic control of recombinant protein N-glycan processing in NS0 and CHO cells. Biotechnol Bioeng 73(3):188–202PubMedCrossRefGoogle Scholar
  3. Bardor M, Nguyen DH et al (2005) Mechanism of uptake and incorporation of the non-human sialic acid N-glycolylneuraminic acid into human cells. J Biol Chem 280(6):4228–4237PubMedCrossRefGoogle Scholar
  4. Barthelmes J, Ebeling C et al (2007) BRENDA, AMENDA and FRENDA: the enzyme information system in 2007. Nucleic Acids Res 35:D511–D514PubMedCrossRefGoogle Scholar
  5. Bork K, Reutter W et al (2007) Enhanced sialylation of EPO by overexpression of UDP-GlcNAc 2-epimerase/ManAc kinase containing a sialuria mutation in CHO cells. FEBS Lett 581(22):4195–4198PubMedCrossRefGoogle Scholar
  6. Borman S (2006) Glycosylation engineering: controlling personalities tame wild sugars on proteins and natural products. Chem Eng News 84(36):13–22Google Scholar
  7. Brockhausen I, Schutzbach J et al (1998) Glycoproteins and their relationship to human disease. Acta Anat 161(1–4):36–78PubMedCrossRefGoogle Scholar
  8. Cartron G, Dacheux L et al (2002) Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor Fc gamma RIIIa gene. Blood 99(3):754–758PubMedCrossRefGoogle Scholar
  9. Cindric M, Bindila L et al (2006) Mass spectrometry-based glycoproteomic approach involving lysine derivatization for structural characterization of recombinant human erythropoietin. J Proteome Res 5(11):3066–3076PubMedCrossRefGoogle Scholar
  10. Datamonitor Report (2005) Monoclonal Antibody Therapies: Evolving into a $30 billion Market.Google Scholar
  11. Elliott S, Lorenzini T et al (2003) Enhancement of therapeutic protein in vivo activities through glycoengineering. Nat Biotechnol 21(4):414–421PubMedCrossRefGoogle Scholar
  12. Elliott S, Egrie J et al (2004) Control of rHuEPO biological activity: the role of carbohydrate. Exp Hematol 32(12):1146–1155PubMedCrossRefGoogle Scholar
  13. Ferrara C, Brunker P et al (2006a) Modulation of therapeutic antibody effector functions by glycosylation engineering: influence of Golgi enzyme localization domain and co-expression of heterologous beta1, 4-N-acetylglucosaminyltransferase III and Golgi alpha-mannosidase II. Biotechnol Bioeng 93(5):851–861PubMedCrossRefGoogle Scholar
  14. Ferrara C, Stuart F et al (2006b) The carbohydrate at Fc gamma RIIIa Asn-162 – an element required for high affinity binding to non-fucosylated IgG glycoforms. J Biol Chem 281(8):5032–5036PubMedCrossRefGoogle Scholar
  15. Ferrari J, Gunson J et al (1998) Chinese hamster ovary cells with constitutively expressed sialidase antisense RNA produce recombinant DNase in batch culture with increased sialic acid. Biotechnol Bioeng 60(5):589–595PubMedCrossRefGoogle Scholar
  16. Goochee CF, Gramer MJ et al (1991) The oligosaccharides of glycoproteins – bioprocess factors affecting oligosaccharide structure and their effect on glycoprotein properties. Bio/Technology 9(12):1347–1355PubMedCrossRefGoogle Scholar
  17. Gramer MJ, Goochee CF (1993) Glycosidase activities in Chinese-hamster ovary cell lysate and cell-culture supernatant. Biotechnol Prog 9(4):366–373PubMedCrossRefGoogle Scholar
  18. Gramer MJ, Goochee CF et al (1995) Removal of sialic-acid from a glycoprotein in Cho cell-culture supernatant by action of an extracellular Cho cell sialidase. Bio/Technology 13(7):692–698PubMedCrossRefGoogle Scholar
  19. Hedlund M, Tangvoranuntakul P et al (2007) N-glycolylneuraminic acid deficiency in mice: implications for human biology and evolution. Mol Cell Biol 27:4340–4346PubMedCrossRefGoogle Scholar
  20. Herscovics A (2001) Structure and function of Class I alpha 1, 2-mannosidases involved in glycoprotein synthesis and endoplasmic reticulum quality control. Biochimie 83(8):757–762PubMedCrossRefGoogle Scholar
  21. Higuchi M, Oh-eda M et al (1992) Role of sugar chains in the expression of the biological activity of human erythropoietin. J Biol Chem 267(11):7703–7709PubMedGoogle Scholar
  22. Inoue N, Watanabe T et al (1999) Asn-linked sugar chain structures of recombinant human thrombopoietin produced in Chinese hamster ovary cells. Glycoconj J 16(11):707–718PubMedCrossRefGoogle Scholar
  23. Itakura K, Hirose T et al (1977) Expression in Escherichia coli of a chemically synthesized gene for hormone somatostatin. Science 198(4321):1056–1063PubMedCrossRefGoogle Scholar
  24. Jelkmann W (2007) Recombinant EPO production – points the nephrologist should know. Nephrol Dial Transplant 22(10):2749–2753PubMedCrossRefGoogle Scholar
  25. Jenkins N, Parekh RB et al (1996) Getting the glycosylation right: implications for the biotechnology industry. Nat Biotechnol 14(8):975–981PubMedCrossRefGoogle Scholar
  26. Kawano S, Hashimoto K et al (2005) Prediction of glycan structures from gene expression data based on glycosyltransferase reactions. Bioinformatics 21(21):3976–3982PubMedCrossRefGoogle Scholar
  27. Kornfeld S (1998) Diseases of abnormal protein glycosylation: an emerging area. J Clin Invest 101(7):1293–1295PubMedCrossRefGoogle Scholar
  28. Kornfeld R, Kornfeld S (1985) Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 54:631–664PubMedCrossRefGoogle Scholar
  29. Krambeck FJ, Betenbaugh MJ (2005) A mathematical model of N-linked glycosylation. Biotechnol Bioeng 92(6):711–728PubMedCrossRefGoogle Scholar
  30. Lai PH, Everett R et al (1986) Structural characterization of human erythropoietin. J Biol Chem 261(7):3116–3121PubMedGoogle Scholar
  31. Lau KS, Partridge EA et al (2007) Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation. Cell 129(1):123–134PubMedCrossRefGoogle Scholar
  32. Lee EU, Roth J et al (1989) Alteration of terminal glycosylation sequences on N-linked oligosaccharides of Chinese-hamster ovary cells by expression of beta-galactoside alpha-2, 6-sialyltransferase. J Biol Chem 264(23):13848–13855PubMedGoogle Scholar
  33. Lee JH, Sundaram S et al (2001) Chinese hamster ovary (CHO) cells may express six beta 4-galactosyltransferases (beta 4GalTs) – consequences of the loss of functional beta 4GalT-1, beta 4GalT-6, or both in CHO glycosylation mutants. J Biol Chem 276(17):13924–13934PubMedGoogle Scholar
  34. Liu G, Neelamegham S (2008) In silico biochemical reaction network analysis (IBRENA): a package for simulation and analysis of reaction networks. Bioinformatics 24:1109–1111PubMedCrossRefGoogle Scholar
  35. Liu G, Neelamegham S., et al. (2008) Systems level modeling of cellular glycosylation reaction networks: O-linked glycan formation on natural selectin ligands. Bioinformatics (submitted).Google Scholar
  36. Lutteke T (2008) Web resources for the glycoscientist. Chembiochem 9(13):2155–2160PubMedCrossRefGoogle Scholar
  37. Mason AB, Miller MK et al (1993) Expression of glycosylated and nonglycosylated human transferrin in mammalian-cells – characterization of the recombinant proteins with comparison to 3 commercially available transferrins. Biochemistry 32(20):5472–5479PubMedCrossRefGoogle Scholar
  38. Minch SL, Kallio PT et al (1995) Tissue-plasminogen activator coexpressed in Chinese-hamster ovary cells with alpha(2, 6)-sialyltransferase contains neuac-alpha(2, 6) Gal-beta(1, 4) Glc-N-Acr linkages. Biotechnol Prog 11(3):348–351PubMedCrossRefGoogle Scholar
  39. Monica TJ, Andersen DC et al (1997) A mathematical model of sialylation of N-linked oligosaccharides in the trans-Golgi network. Glycobiology 7(4):515–521PubMedCrossRefGoogle Scholar
  40. Munzert E, Muthing J et al (1996) Sialidase activity in culture fluid of Chinese hamster ovary cells during batch culture and its effect on recombinant human antithrombin III integrity. Biotechnol Prog 12(4):559–563PubMedCrossRefGoogle Scholar
  41. Pavlou AK, Reichert JM (2004) Recombinant protein therapeutics – success rates, market trends and values to 2010. Nat Biotechnol 22:1513–1519PubMedCrossRefGoogle Scholar
  42. Peter-Katalinic J (2005) Methods in enzymology: O-glycosylation of proteins. Mass Spectrom: Modified Proteins and Glycoconjugates 405:139–171Google Scholar
  43. Rothman RJ, Perussia B et al (1989) Antibody-dependent cytotoxicity mediated by natural-killer-cells is enhanced by castanospermine-induced alterations of Igg glycosylation. Mol Immunol 26(12):1113–1123PubMedCrossRefGoogle Scholar
  44. Schomburg I, Chang A et al (2004) BRENDA, the enzyme database: updates and major new developments. Nucleic Acids Res 32:D431–D433PubMedCrossRefGoogle Scholar
  45. Spellman MW, Basa LJ et al (1989) Carbohydrate structures of human-tissue plasminogen-activator expressed in Chinese-hamster ovary cells. J Biol Chem 264(24):14100–14111PubMedGoogle Scholar
  46. Spellman MW, Leonard CK et al (1991) Carbohydrate structures of recombinant soluble human Cd4 expressed in Chinese-hamster ovary cells. Biochemistry 30(9):2395–2406PubMedCrossRefGoogle Scholar
  47. Stanley P, Raju TS et al (1996) CHO cells provide access to novel N-glycans and developmentally regulated glycosyltransferases. Glycobiology 6(7):695–699PubMedCrossRefGoogle Scholar
  48. Suga A, Yamanishi Y, Hashimoto K, Goto S, Kanehisa M (2007) An improved scoring scheme for predicting glycan structures from gene expressison data. Genome Inform 18:237–246PubMedCrossRefGoogle Scholar
  49. Tabas I, Kornfeld S (1979) Purification and characterization of a rat-liver golgi alpha-mannosidase capable of processing asparagine-linked oligosaccharides. J Biol Chem 254(22):1655–1663Google Scholar
  50. Umana P, Bailey JE (1997) A mathematical model of N-linked glycoform biosynthesis. Biotechnol Bioeng 55(6):890–908PubMedCrossRefGoogle Scholar
  51. Umana P, Jean-Mairet J et al (1999) Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nat Biotechnol 17(2):176–180PubMedCrossRefGoogle Scholar
  52. von der Lieth CW, Lutteke T et al (2006) The role of informatics in glycobiology research with special emphasis on automatic interpretation of MS spectra. Biochim Biophys Acta – General Subjects 1760(4):568–577CrossRefGoogle Scholar
  53. Wada Y (2006) Mass spectrometry for congenital disorders of glycosylation, CDG. J Chromatogr B Analyt Technol Biomed Life Sci 838(1):3–8PubMedCrossRefGoogle Scholar
  54. Wada Y, Nishikawa A et al (1992) Structure of serum transferrin in carbohydrate-deficient glycoprotein syndrome. Biochem Biophys Res Commun 189(2):832–836PubMedCrossRefGoogle Scholar
  55. Weiss P, Tietze F et al (1989) Identification of the metabolic defect in sialuria. J Biol Chem 264(30):17635–17636PubMedGoogle Scholar
  56. Yamaguchi K, Akai K et al (1991) Effects of site-directed removal of N-glycosylation sites in human erythropoietin on its production and biological properties. J Biol Chem 266(30):20434–20439PubMedGoogle Scholar
  57. Yamane-Ohnuki N, Kinoshita S et al (2004) Establishment of FUT8 knockout Chinese hamster ovary cells: an ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity. Biotechnol Bioeng 87(5):614–622PubMedCrossRefGoogle Scholar
  58. Zhu A, Hurst R (2002) Anti-N-glycolylneuraminic acid antibodies identified in healthy human serum. Xenotransplantation 9(6):376–381PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Sandra V. Bennun
    • 1
  • Frederick J. Krambeck
    • 1
  • Michael J. Betenbaugh
    • 1
  1. 1.Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityMarylandUSA

Personalised recommendations