Advertisement

Neurofysiologie bij pijn

  • A. Malfliet
  • J. Nijs
Chapter

Samenvatting

In dit eerste hoofdstuk staan twee aspecten van pijn centraal: de onderliggende pijnfysiologische en de pijnpsychologische mechanismen. Dit hoofdstuk omvat de definitie van pijn, de neurofysiologie van acute en chronische pijn, de invloed van coping, gedachten, percepties, emoties en cognities op pijn, en de invloed van stress en slaapdeprivatie op pijn. Binnen de neurofysiologie van acute pijn belichten we het perifere zenuwstelsel (neuronen, axonen en de actiepotentiaal), het centrale zenuwstelsel (het ruggenmerg, de dorsale hoorn, ascenderende en descenderende banen, en de verwerking op hersenniveau), het mechanisme achter nociceptieve inhibitie en facilitatie, en hoe en waarom perifere sensitisatie tot stand komt. Bij de neurofysiologie van chronische pijn gaan we in op de mechanismen achter chronische pijn en centrale sensitisatie, waaronder windup, disfunctionele nociceptieve inhibitie en overactieve nociceptieve facilitatie, sensitisatie op hersenniveau en de invloed van gliacellen. Dit alles zou moeten leiden tot een summiere kennis van de neurofysiologie en neuropsychologie van chronische pijn, die de basis zal vormen voor de rest van dit boek, waarin de revalidatie voor de patiënt met chronische pijn centraal staat.

Literatuur

  1. Bartolomucci, A., Palanza, P., Parmigiani, S., Pederzani, T., Merlot, E., Neveu, P. J., et al. (2003). Chronic psychosocial stress down-regulates central cytokines mRNA. Brain Research Bulletin, 62(3), 173–178.PubMedCrossRefGoogle Scholar
  2. Bushnell, M. C., Čeko, M., & Low, L. A. (2013). Cognitive and emotional control of pain and its disruption in chronic pain. Nature Reviews Neuroscience, 14(7), 502–511.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Chudler, E. H., Sugiyama, K., & Dong, W. K. (1993). Nociceptive responses in the neostriatum and globus pallidus of the anesthetized rat. Journal of Neurophysiology, 69(6), 1890–1903.PubMedCrossRefGoogle Scholar
  4. Cull-Candy, S., Brickley, S., & Farrant, M. (2001). NMDA receptor subunits: Diversity, development and disease. Current Opinion in Neurobiology, 11(3), 327–335.PubMedCrossRefGoogle Scholar
  5. Daenen, L., Nijs, J., Roussel, N., Wouters, K., Loo, M. van, & Cras, P. (2013). Dysfunctional pain inhibition in patients with chronic whiplash-associated disorders: An experimental study. Clinical Rheumatology, 32(1), 23–31.PubMedCrossRefGoogle Scholar
  6. Davis, K. D., & Moayedi, M. (2013). Central mechanisms of pain revealed through functional and structural MRI. Journal of Neuroimmune Pharmacology, 8(3), 518–534.PubMedCrossRefGoogle Scholar
  7. Felice, M. de, & Ossipov, M. H. (2016). Cortical and subcortical modulation of pain. Pain Management, 6(2), 111–120.PubMedCrossRefGoogle Scholar
  8. Haack, M., Sanchez, E., & Mullington, J. M. (2007). Elevated inflammatory markers in response to prolonged sleep restriction are associated with increased pain experience in healthy volunteers. Sleep, 30(9), 1145–1152.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Jahn, A., Nee, D. E., Alexander, W. H., & Brown, J. W. (2016). Distinct regions within medial prefrontal cortex process pain and cognition. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 36(49), 12385–12392.CrossRefGoogle Scholar
  10. Jones, A. K., & Derbyshire, S. W. (1997). Reduced cortical responses to noxious heat in patients with rheumatoid arthritis. Annals of the Rheumatic Diseases, 56(10), 601–607.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Julien, N., Goffaux, P., Arsenault, P., & Marchand, S. (2005). Widespread pain in fibromyalgia is related to a deficit of endogenous pain inhibition. Pain, 114(1–2), 295–302.PubMedCrossRefGoogle Scholar
  12. Kalinchuk, A. V., McCarley, R. W., Porkka-Heiskanen, T., & Basheer, R. (2010). Sleep deprivation triggers inducible nitric oxide-dependent nitric oxide production in wake–Active basal forebrain neurons. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 30(40), 13254–13264.CrossRefGoogle Scholar
  13. Kregel, J., Coppieters, I., DePauw, R., Malfliet, A., Danneels, L., Nijs, J., et al. (2017). Does conservative treatment change the brain in patients with chronic musculoskeletal pain? A systematic review. Pain Physician, 20(3), 139–154.Google Scholar
  14. Latremoliere, A., & Woolf, C. J. (2009). Central sensitization: A generator of pain hypersensitivity by central neural plasticity. The Journal of Pain: Official Journal of the American Pain Society, 10(9), 895–926.CrossRefGoogle Scholar
  15. Liu, Y., & Zhang, J. (2000). Recent development in NMDA receptors. Chinese Medical Journal, 113(10), 948–956.PubMedGoogle Scholar
  16. Loggia, M. L., Chonde, D. B., Akeju, O., Arabasz, G., Catana, C., Edwards, R., et al. (2015). Evidence for brain glial activation in chronic pain patients. Brain, 138(3), 604–615.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Malfliet, A., Coppieters, I., Wilgen, P. van, Kregel, J., Pauw, R. de, Dolphens M., et al. (2017). Brain changes associated with cognitive and emotional factors in chronic pain: A systematic review. European Journal of Pain, 21(5), 769–786. PubMedCrossRefGoogle Scholar
  18. Malfliet, A., Kregel, J., Cagnie, B., Kuipers, M., Dolphens, M., Roussel, N., et al. (2015). Lack of evidence for central sensitization in idiopathic, non-traumatic neck pain: A systematic review. Pain Physician, 18(3), 223–236.PubMedGoogle Scholar
  19. Mansour, A. R., Farmer, M. A., Baliki, M. N., & Apkarian, A. V. (2014). Chronic pain: The role of learning and brain plasticity. Restorative Neurology and Neuroscience, 32(1), 129–139.PubMedPubMedCentralGoogle Scholar
  20. McCray, C. J., & Agarwal, S. K. (2011). Stress and autoimmunity. Immunology and Allergy Clinics of North America, 31(1), 1–18.PubMedCrossRefGoogle Scholar
  21. McCulloch, J., & Transfeldt, E. (1997). Pain. In Macnab’s backache (pp. 358–373). Baltimore: Williams & Wilkins.Google Scholar
  22. Meeus, M., Nijs, J., Wauwer, N. van de, Toeback, L., & Truijen, S. (2008). Diffuse noxious inhibitory control is delayed in chronic fatigue syndrome: An experimental study. Pain, 139(2), 439–448.PubMedCrossRefGoogle Scholar
  23. Melzack, R., & Wall, P. D. (1965). Pain mechanisms: A new theory. Science, 150(3699), 971–979.PubMedCrossRefGoogle Scholar
  24. Naugle, K. M., Fillingim, R. B., & Riley, J. L. (2012). A meta-analytic review of the hypoalgesic effects of exercise. The Journal of Pain: Official Journal of the American Pain Society, 13(12), 1139–1150.CrossRefGoogle Scholar
  25. Nijs, J., Kosek, E., Oosterwijck, J. van, & Meeus, M. (2012). Dysfunctional endogenous analgesia during exercise in patients with chronic pain: To exercise or not to exercise? Pain Physician, 15(3 Suppl), ES205–ES213.Google Scholar
  26. Oosterwijck, J. van, Nijs, J., Meeus, M., & Paul, L. (2013). Evidence for central sensitization in chronic whiplash: A systematic literature review. European Journal of Pain (London, England), 17(3), 299–312.CrossRefGoogle Scholar
  27. Ossipov, M. H., Morimura, K., & Porreca, F. (2014). Descending pain modulation and chronification of pain. Current Opinion in Supportive and Palliative Care, 8(2), 143–151.PubMedPubMedCentralGoogle Scholar
  28. Paoletti, P., & Neyton, J. (2007). NMDA receptor subunits: Function and pharmacology. Current Opinion in Pharmacology, 7(1), 39–47.PubMedCrossRefGoogle Scholar
  29. Petersen, G. L., Finnerup, N. B., Grosen, K., Pilegaard, H. K., Tracey, I., Benedetti, F., et al. (2014). Expectations and positive emotional feelings accompany reductions in ongoing and evoked neuropathic pain following placebo interventions. Pain, 155(12), 2687–2698.PubMedCrossRefGoogle Scholar
  30. Ren, K., & Dubner, R. (1996). Enhanced descending modulation of nociception in rats with persistent hindpaw inflammation. Journal of Neurophysiology, 76, 3025–3037.PubMedCrossRefGoogle Scholar
  31. Simons, L. E., Elman, I., & Borsook, D. (2014). Psychological processing in chronic pain: A neural systems approach. Neuroscience and Biobehavioral Reviews, 39, 61–78.PubMedCrossRefGoogle Scholar
  32. Tarrago, M. da G. L., Deitos, A., Brietzke, A. P., Vercelino, R., Torres, I. L. S., Fregni, F., et al. (2016). Descending control of nociceptive processing in knee osteoarthritis is associated with intracortical disinhibition: An exploratory study. Medicine, 95(17), e3353.PubMedCentralCrossRefGoogle Scholar
  33. Tesarz, J., Gerhardt, A., Leisner, S., Janke, S., Treede, R. D., & Eich, W. (2015). Distinct quantitative sensory testing profiles in nonspecific chronic back pain subjects with and without psychological trauma. Pain, 156(4), 577–586.PubMedCrossRefGoogle Scholar
  34. Vase, L., Nikolajsen, L., Christensen, B., Egsgaard, L. L., Arendt-Nielsen, L., Svensson, P., et al. (2011). Cognitive-emotional sensitization contributes to wind-up-like pain in phantom limb pain patients. Pain, 152(1), 157–162.PubMedCrossRefGoogle Scholar
  35. Vierck, C. J., Whitsel, B. L., Favorov, O. V., Brown, A. W., & Tommerdahl, M. (2013). Role of primary somatosensory cortex in the coding of pain. Pain, 154(3), 334–344.PubMedCrossRefGoogle Scholar
  36. Walker, F. R., Nilsson, M., & Jones, K. (2013). Acute and chronic stress-induced disturbances of microglial plasticity, phenotype and function. Current Drug Targets, 14(11), 1262–1276.PubMedCrossRefGoogle Scholar
  37. Wilcox, C. E., Mayer, A. R., Teshiba, T. M., Ling, J., Smith, B. W., Wilcox, G. L., et al. (2015). The subjective experience of pain: An FMRI study of percept-related models and functional connectivity. Pain Medicine (Malden, Mass.), 16(11), 2121–2133.  https://doi.org/10.1111/pme.12785.CrossRefGoogle Scholar
  38. Williams, A. C. de C., & Craig, K. D. (2016). Updating the definition of pain. Pain, 157(11), 2420–2423.PubMedCrossRefGoogle Scholar
  39. Wisor, J. P., Schmidt, M. A., & Clegern, W. C. (2011). Evidence for neuroinflammatory and microglial changes in the cerebral response to sleep loss. Sleep, 34(3), 261–272.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Woolf, C. J. (2011). Central sensitization: Implications for the diagnosis and treatment of pain. Pain, 152(3 Suppl), S2–S15.PubMedCrossRefGoogle Scholar
  41. Woolf, C. J., & Salter, M. W. (2000). Neuronal plasticity: Increasing the gain in pain. Science (New York, N.Y.), 288(5472), 1765–1769.CrossRefGoogle Scholar
  42. Yu, R., Gollub, R. L., Spaeth, R., Napadow, V., Wasan, A., & Kong, J. (2014). Disrupted functional connectivity of the periaqueductal gray in chronic low back pain. NeuroImage Clinical, 6, 100–108.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Zhang, H., Xie, W., & Xie, Y. (2005). Spinal cord injury triggers sensitization of wide dynamic range dorsal horn neurons in segments rostral to the injury. Brain Research, 1055(1), 103–110.PubMedCrossRefGoogle Scholar
  44. Zhou, Q., Price, D. D., Callam, C. S., Woodruff, M. A., & Verne, G. N. (2011). Effects of the N-methyl-D-aspartate receptor on temporal summation of second pain (wind-up) in irritable bowel syndrome. The Journal of Pain: Official Journal of the American Pain Society, 12(2), 297–303.CrossRefGoogle Scholar
  45. Zusman, M. (2002). Forebrain-mediated sensitization of central pain pathways: “Non-specific” pain and a new image for MT. Manual Therapy, 7(2), 80–88.PubMedCrossRefGoogle Scholar

Copyright information

© Bohn Stafleu van Loghum is een imprint van Springer Media B.V., onderdeel van Springer Nature 2019

Authors and Affiliations

  • A. Malfliet
    • 1
    • 2
  • J. Nijs
    • 3
  1. 1.Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Universiteit GentGentBelgië
  2. 2.Onderzoeksgroep Pain in MotionFonds Wetenschappelijk Onderzoek (FWO)BrusselBelgië
  3. 3.Onderzoeksgroep Pain in MotionVrije Universiteit Brussel, Universitair Ziekenhuis BrusselBrusselBelgië

Personalised recommendations