Onderzoek naar taal en spraak met behulp van metingen aan de hersenen

april 1998
  • H.F.M. Peters
  • R. Bastiaanse
  • J. Van Borsel
  • P.H.O. Dejonckere
  • K. Jansonius-Schultheiss
  • Sj. Van der Meulen
  • B.J.E. Mondelaers


Mentale processen zijn het product van de activiteit van het zenuwstelsel. Een van de grootste wetenschappelijke uitdagingen is te ontdekken hoe de fysiologische activiteit van het zenuwstelsel resulteert in perceptie, cognitie en bewustzijn.


  1. Allison, T., Wood, C.C., & McCarthy, G. (1986). The central nervous system. In: M.G.H. Coles, E. Donchin and S.W. Porges (eds.), Psychophysiology: Systems, Processes, and Applications. New York: Guilford Press (5–21).Google Scholar
  2. Baddeley, A. (1992). Working memory: the interface between memory and cognition. Journal of Cognitive Neuroscience, 4, 281–288.Google Scholar
  3. Beatty, J. (1986). Computation, control and energetics: a biological perspective. In: G.R.J. Hockey, A.W.K. Gaillard & M.G.H. Coles (eds.), Energetics and human information processing. Groningen: Martinus Nijhoff Publishers (43–52).Google Scholar
  4. Boivin, M.J., Giordani, B., Berent, S., Amato, D.A., Lehtinen, S., Koeppe, R.A., Buchtel, H.A., Foster, N.L., & Kuhl, D.E. (1992). Verbal fluency and positron emission tomographic mapping of regional cerebral glucose metabolism. Cortex, 28, 231–239.Google Scholar
  5. Braun, A.R., Varga, M., Stager, S., Schulz, G., Selbie, S., Maisog, J.M., Carson, R.E., & Ludlow, C.L. (1997). Altered patterns of cerebral activity during speech and language production in developmental stuttering. An H2(15)0 Positron Emission Tomography study. Brain, 120, 761–784.Google Scholar
  6. Churchland, P.S., & Sejnowski, T.J. (1992). The computational brain. Cambridge (ma): The mit Press.Google Scholar
  7. Chwilla, D. (1996). Electrophysiology of word processing: the lexical processing nature of the N4OO priming effect. Doctoral Thesis. Zutphen: Koninklijke Wöhrmann.Google Scholar
  8. Coles, M.G.H., Smid, H.G.O.M., Scheffers, M.K., & Otten, L.J. (1995). Mental chronometry and the study of human information processing. In: M.D. Rugg & M.G.H. Coles (eds.), Electrophysiology of mind. Oxford: Oxford University Press. (27–39).Google Scholar
  9. Coltheart, M. (1985). Cognitive neuropsychology and the study of reading. In: M.I. Posner & O.S.M. Marin (eds.), Attention and Performance XI. Hillsdale (NJ): Erlbaum. (3–37).Google Scholar
  10. De Renzi, E., & Faglioni, P. (1978). Normative data and screening power of a shortened version of the token test. Cortex, 14, 41–49.Google Scholar
  11. Desimone, R., & Ungerleider, L.G. (1989). Neural mechanisms of visual processing in monkeys. In: F. Boller & J. Grafman (eds.), Handbook of neuropsychology, vol. 2. Amsterdam: Elsevier. (267–298).Google Scholar
  12. D'Esposito, M, & Grossman, M. (1996). The physiological basis of executive function and working memory. The Neuroscientist, 6, 345–352.Google Scholar
  13. Dronkers, N.F. (1996). A new brain region for coordinating speech articulation. Nature, 384, 159–161.Google Scholar
  14. Eden, G.F., VanMeter, J.W., Rumsey, J.M., Maisog, J.M., Woods, R.P., & Zeffiro, T.A. (1996). Abnormal processing of visual motion in dyslexia revealed by functional brain imaging. Nature, 382, 19–20.Google Scholar
  15. Elbert, T., Pantev, C., Wienbruch, C., Rockstroh, B., & Taub, E. (1995). Increased cortical representation of the fingers of the left hand in string players. Science, 270, 305–307.Google Scholar
  16. Falkenstein, M., Hohnsbein, J., Hoormann, J., & Blanke, L. (1990). Effects of errors in choice reaction tasks on the erf under focussed and divided attention. In: C.H.M. Brunia, A.W.K. Gaillard & A. Kok (eds.), Psychophysiological brain research. Amsterdam: Elsevier. (192–195).Google Scholar
  17. Fiez, J.A., Raichle, M.E., Balota, D.A., Tallal, P., & Petersen, S.E. (1996). pet activation of posterior temporal regions during auditory word presentation and verb generation. Cerebral Cortex, 6, 1–10.Google Scholar
  18. Flowers, D.L, Wood, F.B., & Naylor, C.E. (1991). Regional cerebral blood flow correlates of language processes in reading disability. Archives of Neurology, 48, 637–643.Google Scholar
  19. Fox, P.T., Ingham, R.J., Ingham, J.C., Hirsch, T.B., Downs, J.H., Martin, C., Jerabek, P., Glass, T., & Lancaster, J.L. (1996). A pet study of the neural systems of stuttering. Nature, 382, 158–162.Google Scholar
  20. Friederici, A.D. (1995). The time course of syntactic activation during language processing: A model based on neuropsychological and neurophysiological data. Brain and Language, 50, 259–281.Google Scholar
  21. Friston, K.J., Ashburner, J., Frith, C.D., Poline, J.B., Heather, J.B., & Frackowiak, R.S.J. (1995). Spatial registration and normalisation of images. Human Brain Mapping, 2, 165–189.Google Scholar
  22. Frith, C.D., Friston, K.J., Liddle, P.F., & Frackowiak, R.S.J. (1991). A pet study of word finding. Neuropsychologia, 39, 1137–1148.Google Scholar
  23. Gazzaniga, M.S. (1995). The cognitive neurosciences. London: mit Press.Google Scholar
  24. Geschwind, N., & Galaburda, A.M. (1985). Cerebral lateralization: Biological mechanisms, associations, and pathology: I. A hypothesis and a program for research. Archives of Neurology, 42, 428–459.Google Scholar
  25. Gevins, A.S., Doyle, J.C., Cutillo, B.A., Schaffer, R.E., Tannehill, R.S., & Bressler, S.L. (1985). Neurocognitive pattern analysis of a visuospatial task: rapidly–shifting foci of evoked correlations between electrodes. Psychophysiology, 22, 32–43.Google Scholar
  26. Grasby, P.M., Frith, C.D., Friston, K.J., Simpson, J., Fletcher, P.C., & Frackowiak, R.S.J. (1994). A graded approach to the functional mapping of brain areas implicated in auditory–verbal memory. Brain, 117, 1271–1282.Google Scholar
  27. Greatrex, J.C., & Drasdo, N. (1995). The magnocellular deficit hypothesis in dyslexia: a review of reported evidence. Opthalmic and Phsyiological Optics, 15, 501–506.Google Scholar
  28. Gross, G.K., Duara, R., Barker, W.W., Loewenstein, D., Chang, J.Y., Yoshii, F., Apicella, A.M., Pascal, S., Boothe, T., Sevush, S., et al. (1991). Positron emission tomographic studies during serial word–reading by normal and dyslexic adults. Journal of Clinical and Experimental Neuropsychology, 13, 531–544.Google Scholar
  29. Gunter, T.C., Stowe, L.A., & Mulder, G. (1997). When syntax meets semantics. Psychophysiology, 34, 660–676.Google Scholar
  30. Karbe, H., Herholz, K., Szelies, B., Pawlik, G., Wienhard, K., & Heiss, W.D. (1989). Regional metabolic correlates of token test results in cortical and subcortical left hemispheric infarction. Neurology, 39, 1083–1088.Google Scholar
  31. Kempler, D., Metter, W., Riege, W.H., Jackson, C.A., Benson, D.F., & Hanson, W.R. (1990). Slowly progressive aphasia: Three cases with language, memory, ct and pet data. Journal of Neurology, Neurosurgery and Psychiatry, 53, 987–993.Google Scholar
  32. Kleinschmidt, A., Indefrey, P., Brown, C., Hagoort, P., Merboldt, K.B., Kruger, G., & Frahm, J. (1996). The visual cortical response to lexical activation: Seeing or reading?Neuroimage, 3, 445.Google Scholar
  33. Knösche, T. (1997). Solutions of the neuroelectromagnetic inverse problem. Doctoral Thesis. Enschede: Twente University.Google Scholar
  34. Kosslyn, S.M., Alpert, N.M., Thompson, W.L., Malijkovic, V, Weise, S.B., Chabris, C.F., Hamilton, S.E, Rauch, S.L., & Buonanno, F.S. (1993). Visual mental imagery activates topographically organized visual cortex: pet investigations. Journal of Cognitive Neuroscience, 5, 263–287.Google Scholar
  35. Kosslyn, S.M., & Koenig, O. (1992). Wet mind. The new cognitive neuroscience. New York: The Free Press.Google Scholar
  36. LaBerge, D., & Buchsbaum, M.S. (1990). Positron emission tomographic measurements of pulvinar activity during an attention task. Journal of Neuroscience, 10, 613–619.Google Scholar
  37. Levelt, W.J.M. (1989). Speaking: from intention to articulation. Cambridge (ma): mit Press.Google Scholar
  38. Mazoyer, B.M., Tzourio, N., Frak, V., Syrota, A., Murayama, N., Levrier, O., Salamon, G., Dehaene, S., Cohen, L., & Mehler, J. (1993). The cortical representation of speech. Journal of Cognitive Neurosciene, 5, 467–479.Google Scholar
  39. McIntosh, A.R., Grady, C.L., Ungerleider, L.G, Haxby, J.V., Rapoport, S.I., & Horwitz, B. (1994). Network analysis of cortical visual pathways mapped with petThe Journal of Neuroscience, 14, 655–666.Google Scholar
  40. McPherson, W.B., Ackerman, P.T., Oglesby, D.M., & Dykman, R.A. (1996). Event–related brain potentials elicited by rhyming and non–rhyming pictures differentiate subgroups of reading disabled adolescents. Integrative Physiological and Behavioral Science, 31, 3–17.Google Scholar
  41. Mesulam, M.M. (1990). Large–scale neurocognitive networks and distributed processing for attention, language and memory. Annals of Neurology, 28, 597–613.Google Scholar
  42. Meijs, J.W.H. (1988). The influence of head geometries on electro– and magnetoencephalograms. Doctoral Thesis. Enschede: University of Twente.Google Scholar
  43. Mulder, G. (1986). The concept and measurement of mental effort. In: G.R.J. Hockey, A.W.K. Gaillard & M.G.H. Coles (eds.), Energetics and human information processing. Groningen: Martinus Nijhoff Publishers (175–198).Google Scholar
  44. Mulder, G., Wijers, A.A., Lange, J.J., Buijink, B.M., Mulder, L.J.M., Willemsen, A.T.M., Paans, A.M.J. (1995). The role of neuroimaging in the discovery of processing stages. A review. Acta Psychologica, 90, 63–79.Google Scholar
  45. Näätänen, R. (1975). Selective attention and evoked potentials in humans – a critical review. Biological Psychology, 2, 237–307.Google Scholar
  46. Neely, J.H. (1976). Semantic priming and retrieval from lexical memory: evidence for facilitory and inhibitory processes. Memory and Cognition, 4, 648–654.Google Scholar
  47. Paller, K.A., Kutas, M., & Mayes, A.R. (1987). Neural correlates of encoding in an incidental learning paradigm. Electroencephalography and Clinical Neurophysiology, 67, 360–371.Google Scholar
  48. Paulesu, E., Frith, C.D., & Frackowiak, R.S.J. (1993). The neural correlates of the verbal component of working memory. Nature, 362, 342–344.Google Scholar
  49. Perani, D., Bressi, S, Cappa, S.F., Vallar, G., Alberoni, M., Grassi, F., Caltagirone, C., Cipolotti, L., Franceschi, M., Lenzi, G.L., & Fazio, F. (1993). Evidence of multiple memory systems in the human brain. Brain, 116, 903–919.Google Scholar
  50. Petersen, S.E., Fox, P.T., Snyder, A.Z., & Raichle, M.F. (1990). Activation of extrastriate and frontal cortical areas by visual words and word–like stimuli. Science, 249, 1041:–1044.Google Scholar
  51. Poeppel, D. (1996). A critical review of pet studies of phonological processing. Brain and Language, 55, 317–351.Google Scholar
  52. Posner, M.I., & Petersen, S.E. (1990). The attention system of the human brain. Annual Review of Neurosciences, 13, 25–42.Google Scholar
  53. Posner, M.I., Raichle, M.E. (1994). Images of mind. New York: Scientific American Library.Google Scholar
  54. Pribram, K.H., & McGuinness, D. (1975). Arousal, activation and effort in the control of attention. Psychological Review, 82, 116–149.Google Scholar
  55. Raichle, M.E. (1987). Circulatory and metabolic correlates of brain function in normal humans. In: V.B. Mountcastle, F. Plum, & S.R. Geiger (eds.), Handbook of physiology, section 1: The nervous system, Vol. V: Higher functions of the brain. Bethesda, md: American Physiological Society (461–481).Google Scholar
  56. Roelfsema, D.R., Engel, A.K., König, P., & Singer, W. (1997). Visuomotor integration is associated with zero time–lag synchronization among cortical areas. Nature, 385, 157–161.Google Scholar
  57. Role, L.W., & Kelly, J.P. (1991). The brain stem: cranial nerve nuclei and the monoaminergic systems. In: E.R. Kandel, J.H. Schwartz & T.M. Jessell (eds.), Principles of neural science. East Norwalk: Appleton & Lange. (683–700).Google Scholar
  58. Rumsey, J.M., Andreason, P., Zametkin, A.J., Aquino, T., King, A.C., Hamburger, S.D., Pikus, A., Rapoport, J.L., & Cohen, R.M. (1992). Failure to activate the left temporoparietal cortex in dyslexia. An oxygen 15 positron emission tomographic study. Archives of Neurology, 49, 527–534.Google Scholar
  59. Sanders, A.F. (1983). Towards a model of stress and human performance. Acta Psychologica, 53, 61–97.Google Scholar
  60. Scherg, M. (1990). Fundamentals of dipole source potential analysis. In: F. Grandori, M. Hoke & G.L. Romani (eds.), Auditory evoked magnetic fields and potentials. Advances in audiology, 6. Basel: Karger. (17–39).Google Scholar
  61. Squire, L.R., & Knowlton, B.J. (1995). Memory, hippocampus, and brain systems. In: M.S. Gazzaniga (ed.), The cognitive neurosciences. London: mit Press. (825–837).Google Scholar
  62. Steinmetz, H., & Seitz, R.J. (1991). Functional anatomy of language processing: Neuroimaging and the problem of individual variability. Neuropsychologia, 29, 1149–1161.Google Scholar
  63. Stowe, L.A., Wijers, A.A., Willemsen, A.T.M., Reuland, E., Paans, A.M.J., & Vaalburg, W. (1994). pet studies of language: An assessment of the reliability of the technique. Journal of Psycholinguistic Research, 23, 499–527.Google Scholar
  64. Talairach, P., & Tournoux, P. (1988). Co–planar stereotaxic atlas of the human brain. 3–dimensional proportional system: an approach to cerebral imaging. Stuttgart: Thieme.Google Scholar
  65. Turennout, M.I. van. (1997). The electrophysiology of speaking: investigations on the time course of semantic, syntactic, and phonological processing. (mpi series in psycholinguistics). Proefschrift. Wageningen: Ponsen & Looyen.Google Scholar
  66. Ungerleider, L.G. (1995). Functional brain imaging studies of cortical mechanisms for memory. Science, 270, 769–775.Google Scholar

Copyright information

© Bohn Stafleu van Loghum, onderdeel van Springer Media 2014

Authors and Affiliations

  • H.F.M. Peters
  • R. Bastiaanse
  • J. Van Borsel
  • P.H.O. Dejonckere
  • K. Jansonius-Schultheiss
  • Sj. Van der Meulen
  • B.J.E. Mondelaers

There are no affiliations available

Personalised recommendations