Advertisement

Genetica van atherosclerose

  • P. S. Monraats
  • W. R. P. Agema
  • J. W. Jukema

Abstract

De klinische manifestaties van atherosclerose, zoals coronair vaatlijden, CVA’s en perifeer vaatlijden zijn welbekend. Coronair vaatlijden is de meest voorkomende doodsoorzaak op het westelijk halfrond, en er wordt voorspeld dat het in 2020 zelfs de grootste oorzaak van morbiditeit en mortaliteit in de gehele wereld zal zijn. Het ontstaan van de atherosclerotische plaque is een proces dat reeds vroeg in het leven begint. Dit proces wordt geïnitieerd door een chronische schade aan het endotheel. De vroege atherosclerotische laesie vertoont een langzame progressie door de vorming van een acellulaire lipidenkern onder een fibreuze kap (figuur 1). Atherosclerose wordt symptomatisch indien de plaque de doorstroming van een vat belemmert. Dit gebeurt ofwel door voortschrijdende progressie van de plaque ofwel door ruptuur, waardoor een acute arteriële trombose ontstaat, vaak leidend tot een totale occlusie van een vat en infarcering van het achter de plaque gelegen weefsel.1,2

Literatuur

  1. 1.
    Lusis AJ. Atherosclerosis. Nature 2000;407:233.PubMedCrossRefGoogle Scholar
  2. 2.
    Libby P. The pathogenesis of atherosclerosis. In : Harrison’s Principles of Internal Medicine, 16th Edition. McGraw-Hill, 2004.Google Scholar
  3. 3.
    Smith SC, Greenland P, Grundy SM. AHA Conference Proceedings. Prevention conference V: Beyond secondary prevention: Identifying the high-risk patient for primary prevention: executive summary. American Heart Association. Circulation 2000;101:111–6.PubMedCrossRefGoogle Scholar
  4. 4.
    Bensen JT, Liese AD, Rushing JT, Province M, Folsom AR, Rich S, et al. Accuracy of proband reported family history: the NHLBI Family Heart Study (FHS). Genet Epidemiol 1999;17:141–50.PubMedCrossRefGoogle Scholar
  5. 5.
    Williams RR, Hunt SC, Heiss G, Province MA, Bensen JT, Higgins M, et al. Usefulness of cardiovascular family history data for population-based preventive medicine and medical research (the Health Family Tree Study and the NHLBI Family Heart Study). Am J Cardiol 2001;87:129–35.PubMedCrossRefGoogle Scholar
  6. 6.
    Wilson PW, D’Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB. Prediction of coronary heart disease using risk factor categories. Circulation 1998;97:1837–47.PubMedCrossRefGoogle Scholar
  7. 7.
    Rissanen AM. Familial occurrence of coronary heart disease: effect of age at diagnosis. Am J Cardiol 1979;44:60–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Watson JD, Crick FH. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 1953;171:737–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Ross R. Atherosclerosis – an inflammatory disease. N Engl J Med 1999;340:115–26.PubMedCrossRefGoogle Scholar
  10. 10.
    Mudd SH, Levy HL, Skovby F. Disorders of transsulfuration. In: Scribver CR, Beaudet AL, Sly WS, Valle D, editors. The metabolic and molecular bases of inherited disease. New York: Mc-Graw-Hill, 1995:1279–327.Google Scholar
  11. 11.
    Yap S, Boers GH, Wilcken B, Wilcken DE, Brenton DP, Lee PJ, et al. Vascular outcome in patients with homocystinuria due to cystathionine beta-synthase deficiency treated chronically: a multicenter observational study. Arterioscler Thromb Vasc Biol 2001;21:2080–5.PubMedCrossRefGoogle Scholar
  12. 12.
    Klerk M, Verhoef P, Clarke R, Blom HJ, Kok FJ, Schouten EG. MTHFR 677C.T polymorphism and risk of coronary heart disease: a meta-analysis. JAMA 2002;288:2023–31.PubMedCrossRefGoogle Scholar
  13. 13.
    Soutar AK. Familial hypercholesterolaemia and LDL receptor mutations. J Intern Med 1992;231:633–41.PubMedCrossRefGoogle Scholar
  14. 14.
    Jansen AC, Wissen S van, Defesche JC, Kastelein JJ. Phenotypic variability in familial hypercholesterolaemia: an update. Curr Opin Lipidol 2002;13:165–71.PubMedCrossRefGoogle Scholar
  15. 15.
    Wittrup HH, Tybjaerg-Hansen A, Nordestgaard BG. Lipoprotein lipase mutations, plasma lipids and lipoproteins, and risk of ischemic heart disease. A meta-analysis. Circulation 1999;99:2901–7.CrossRefGoogle Scholar
  16. 16.
    Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980;288:373–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Wang XL, Sim AS, Badenhop RF, McCredie RM, Wilcken DE. A smokingdependent risk of coronary artery disease associated with a polymorphism of the endothelial nitric oxide synthase gene. Nat Med 1996;2:41–5.PubMedCrossRefGoogle Scholar
  18. 18.
    Cahilly C, Ballantyne CM, Lim DS, Gotto A, Marian AJ. A variant of p22(phox), involved in generation of reactive oxygen species in the vessel wall, is associated with progression of coronary atherosclerosis. Circ Res 2000;86(4):391–95.PubMedCrossRefGoogle Scholar
  19. 19.
    Campos H, D’Agostino M, Ordovas JM. Gene-diet interactions and plasma lipoproteins: role of apolipoprotein E and habitual saturated fat intake. Genet Epidemiol 2001;20:117–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Cohen JC, Boerwinkle E, Mosley TH, Hobbs HH. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med 2006;354: 126472.PubMedCrossRefGoogle Scholar
  21. 21.
    Lutucuta S, Ballantyne CM, Elghannam H, Gotto AM, Jr., Marian AJ. Novel polymorphisms in promoter region of atp binding cassette transporter gene and plasma lipids, severity, progression, and regression of coronary atherosclerosis and response to therapy. Circ Res 2001;88(9):969–73.PubMedCrossRefGoogle Scholar
  22. 22.
    Lacquemant C, Froguel P, Lobbens S, Izzo P, Dina C, Ruiz J. The adiponectin gene SNP + 45 is associated with coronary artery disease in Type 2 (non-insulindependent) diabetes mellitus. Diabet Med 2004;21(7):776–81.PubMedCrossRefGoogle Scholar
  23. 23.
    Lindpaintner K, Pfeffer MA, Kreutz R, Stampfer MF, Grodstein F, LaMotte F, et al. A prospective evaluation of an angiotensin-converting-enzyme gene polymorphism and the risk of ischemic heart disease. N Engl J Med 1995;332:706–11.PubMedCrossRefGoogle Scholar
  24. 24.
    Samani NJ, Thompson JR, O’Toole L, Channer K, Woods KL. A meta-analysis of the association of the deletion allele of the angiotensin-converting-enzyme gene with myocardial infarction. Circulation 1996;94:708–12.PubMedCrossRefGoogle Scholar
  25. 25.
    Agerholm-Larsen B, Nordestgaard BG, Tybjaerg-Hansen A. ACE en polymorphism in cardiovascular disease. Meta-analysis of small and large studies in whites. Arterioscler Thromb Vasc Biol 2000;20:484–92.PubMedCrossRefGoogle Scholar
  26. 26.
    Keavney B, McKenzie C, Parish S, Palmer A, Clark S, Youngman L, et al. Largescale test of hypothesised associations between the angiotensin-convertingenzyme insertion/deletion polymorphism and myocardial infarction in about 5,000 cases and 6,000 controls. International Studies of Infarct Survival (ISIS) Collaboration. Lancet 2000;355:434–42.PubMedGoogle Scholar
  27. 27.
    Dagenais GR, Pogue J, Fox K, Simoons ML, Yusuf S. Angiotensin-convertingenzyme inhibitors in stable vascular disease without left ventricular systolic dysfunction or heart failure: a combined analysis of three trials. Lancet 2006; 368(9535):581–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Baroni MG, D’Andrea MP, Montali A, Pannitteri G, Barilla F, Campagna F, et al. A common mutation of the insulin receptor substrate-1 gene is a risk factor for coronary artery disease. Arterioscler Thromb Vasc Biol 1999;19:2975–80.PubMedCrossRefGoogle Scholar
  29. 29.
    Woods A, Brull DJ, Humphries SE, Montgomery HE. Genetics of inflammation and risk of coronary artery disease: the central role of interleukin-6. Eur Heart J 2000;21:1574–83.PubMedCrossRefGoogle Scholar
  30. 30.
    Hubacek JA, Piha J, Skodova Z, Stanek V, Poledne R. C(−260)T polymorphism in the promoter of the CD14 monocyte receptor gene as a risk factor for myocardial infarction. Circulation 1999;99:3218–20.PubMedCrossRefGoogle Scholar
  31. 31.
    Behague I, Poirier O, Nicaud V, Evans A, Arveiler D, Luc G, et al. Beta fibrinogen gene polymorphism are associated with plasma fibrinogen and coronary artery disease in patients with myocardial infarction. The ECTIM Study. Circulation 1996;93:440–9.CrossRefGoogle Scholar
  32. 32.
    Jukema JW. Matching treatment to the genetic basis of (lipid) disorder in patients with coronary artery disease. Heart 1999;82:126–7.PubMedGoogle Scholar
  33. 33.
    Kuivenhoven JA, Jukema JW, Zwinderman AH, Knijff P de, McPherson R, Bruschke AV, et al. The role of a common variant of the cholesteryl ester transferprotein gene in the progression of coronary atherosclerosis. The Regression Growth Evaluation Statin Study Group. N Engl J Med 1998;338:86–93.PubMedCrossRefGoogle Scholar
  34. 34.
    Rosendaal FR, Siscovick DS, Schwartz SM, Beverly RK, Psaty BM, Longstreth WT Jr, et al. Factor V Leiden (resistance to activated protein C) increases the risk of myocardial infarction in young women. Blood 1997;89:2817–21.PubMedGoogle Scholar
  35. 35.
    Psaty BM, Smith NL, Lemaitre RN, Vos HL, Heckbert SR, La Croix AZ, et al. Hormone replacement therapy, prothrombotic mutations, and the risk of incident nonfatal myocardial infarction in postmenopausal women. JAMA 2001;285:906–13.PubMedCrossRefGoogle Scholar
  36. 36.
    Rider MJ, Reiner AP, Gage BF, Nickerson DA, Eby CS, McLeod HL, Blough DK, Thummel KE, Veenstra DL, Rettie AE. Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N Engl J Med 2005;352:2285–93.CrossRefGoogle Scholar
  37. 37.
    Sconce EA, Khan TI, Wynne HA, Avery P, Monkhouse L, King BP, Wood P, Kesteven P, Daly AK, Kamali F. The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. Blood 2005;106:2329–33.PubMedCrossRefGoogle Scholar
  38. 38.
    Ridker PM, Rifai N, Pfeffer MA, Sacks F, Braunwald E. Long-term effects of pravastatin on plasma concentration of C-reactive protein. The Cholesterol and Recurrent Events (CARE) Investigators. Circulation 1999;100:230–5.PubMedCrossRefGoogle Scholar
  39. 39.
    Carlquist JF, Muhlestein JB, Anderson JL. Lipoprotein-associated phospholipase A2: a new biomarker for cardiovascular risk assessment and potential therapeutic target. Expert Rev Mol Diagn 2007;7:511–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Liem AH, Boven AJ van, Veeger NJ, Withagen AJ, Robles de Medina RM, Tijssen JG, et al. Efficacy of folic acid when added to statin therapy in patients with hypercholesterolemia following acute myocardial infarction: a randomised pilot trial. Int J Cardiol 2004;93:175–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Ubbink JB. The role of vitamins in the pathogenesis and treatment of hyperhomocyst(e)inaemia. J Inherit Metab Dis 1997;20:316–25.PubMedCrossRefGoogle Scholar

Copyright information

© Eerste druk 2008

Authors and Affiliations

  • P. S. Monraats
    • 1
  • W. R. P. Agema
    • 2
  • J. W. Jukema
    • 2
  1. 1.Leids Universitair Medisch CentrumNetherlands
  2. 2.Leids Universitair Medisch CentrumLeidenNetherlands

Personalised recommendations