2 Inspanningsfysiologie en ontwikkeling van het gezonde kind

  • T. Takken
  • H.J. Hulzebos


Bij kinderen nemen, met de toename van de leeftijd, lichaamsgewicht en -lengte toe, maar niet altijd even snel of evenredig. Er zijn perioden van groeispurt en perioden van stilstand. Ook veranderen door de groei de proporties.


  1. Åstrand P-O, Rodahl K, Dahl HA, Stromme SB. Textbook of Work Physiology. 4th ed. New-York: McGraw-Hill; 2003.Google Scholar
  2. Åstrand P-O. Experimental studies of physical working capacity in relation to sex and age. Copenhagen: Ejnar Munskgaard; 1952.Google Scholar
  3. Bar-Or O, Rowland T. Pediatric Exercise Medicine. From Physiologic Principles to Healthcare Application. Champaign, il: Human Kinetics; 2004.Google Scholar
  4. Bar-Or O. Pediatric sports medicine for the practitioner. New York: Springer-Verlag; 1983a.CrossRefGoogle Scholar
  5. Bar-Or O. Sports Medicine for the practitioner: From Physiological Principles to Clinical Applications. New York: Springer; 1983b.CrossRefGoogle Scholar
  6. Beenakker EA, Hoeven JH van der, Fock JM, Maurits NM. Reference values of maximum isometric muscle force obtained in 270 children aged 4-16 years by hand-held dynamometry. Neuromuscul Disord. 2001;11:441-6.PubMedCrossRefGoogle Scholar
  7. Beraldi E, Cooper DM, Zanconato S, Armon Y. Heart rate recovery following 1 minute exercise in children and adults. Pediatr Res. 1991;29:575-9.CrossRefGoogle Scholar
  8. Bink B, Wafelbakker F. Physical working capacity at maximum levels of work, of boys 12-18 years of age. Zeitschrift fuer arztlichen Fortbildung (Jena). 1968;62:957-61.Google Scholar
  9. Binkhorst RA, Saris WH, Noordeloos AM, Hof MA van ’t, Haan AF de, editors. Maximal oxygen consumption of children (6 to 18 years) predicted from maximal and submaximal values in treadmill and bicycle tests. Champaign, il: Human Kinetics Publishers; 1985.Google Scholar
  10. Blimkie CJR, Roche P, Bar-Or O. Anaerobic-to-aerobic power ratio in adolescent boys and girls. In: Rutenfranz J, Roche P, Bar-Or O, editors. Children and Exercise xii. Champaign, il: Human Kinetics; 1986. p. 31-7.Google Scholar
  11. Boisseau N, Delamarche P. Metabolic and hormonal responses to exercise in children and adolescents. Sports Med. 2000;30:405-22.PubMedCrossRefGoogle Scholar
  12. Colling-Saltin A. Enzyme histochemistry on skeletal muscle of the human foetus. J Neurol Sci. 1978;39:169-85.PubMedCrossRefGoogle Scholar
  13. Dotan R, Falk B, Raz A. Intensity effect of active recovery from glycolytic exercise on decreasing blood lactate concentration in prepubertal children. Med Sci Sports Exerc. 2000;32:564-70.PubMedCrossRefGoogle Scholar
  14. Eriksson BO, Gollnick PD, Saltin B. Muscle metabolism and enzyme activities after training in boys 11-13 years old. Acta Physiol Scand. 1973;87:485-97.PubMedCrossRefGoogle Scholar
  15. Eriksson O, Saltin B. Muscle metabolism during exercise in boys aged 11 to 16 years compared to adults. Acta Paediatrica Belgica. 1974;28 Suppl:257-65.PubMedGoogle Scholar
  16. Godfrey S. Exercise testing in children. London: W.B. Saunders Company Ltd.; 1974.Google Scholar
  17. Gursel Y, Sonel B, Gok H, Yalcin P. The peak oxygen uptake of healthy Turkish children with reference to age and sex: a pilot study. Turk J Pediatr. 2004;46:38-43.PubMedGoogle Scholar
  18. Hebestreit H, Meyer F, Htay H, Heigenhauser GJ, Bar-Or O. Plasma metabolites, volume and electrolytes following 30-s high-intensity exercise in boys and men. Eur J Appl Physiol Occup Physiol. 1996;72:563-9.PubMedCrossRefGoogle Scholar
  19. Hebestreit H, Mimura K, Bar-Or O. Recovery of muscle power after high-intensity short-term exercise: comparison between boys and men. J Appl Physiol. 1993;74:2875-80.PubMedGoogle Scholar
  20. Hill AV, Lupton H. Muscular exercise, lactic acid and the supply and utilization of oxygen. Quarterly Journal of Medicine 1923;16:135-71.CrossRefGoogle Scholar
  21. Inbar O, Bar-Or O, Skinner JS. The wingate anaerobic test. Champaign, il: Human Kinetics; 1996.Google Scholar
  22. Krahenbuhl GS, Skinner JS, Kohrt WM. Developmental aspects of maximal aerobic power in children. Exerc Sport Sci Rev. 1985;13:503-38.PubMedCrossRefGoogle Scholar
  23. Leeuwen PB van, Net J van der, Helders PJM, Takken T. Exercise parameters in healthy Dutch children [in Dutch, English summary]. Geneeskunde en Sport. 2004;37:126-32.Google Scholar
  24. LeMura LM, Duvillard SP von, Cohen SL, Root CJ, Chelland SA, Andreacci J, et al. Treadmill and cycle ergometry testing in 5- to 6-year-old children. Eur J Appl Physiol. 2001;85:472-8.PubMedCrossRefGoogle Scholar
  25. Lucia A, Rabadan M, Hoyos J, Hernandez-Capilla M, Perez M, San Juan AF, et al. Frequency of the Vo 2max Plateau Phenomenon in World-Class Cyclists. Int J Sports Med. 2006;27(12):982-92.CrossRefGoogle Scholar
  26. Morgan DW, Tseh W, Caputo JL, Keefer DJ, Craig IS, Griffith KB, et al. Longitudinal profiles of oxygen uptake during treadmill walking in able-bodied children: the locomotion energy and growth study. Gait Posture. 2002;15:230-5.PubMedCrossRefGoogle Scholar
  27. Ohuchi H, Hamamichi Y, Hayashi T, Watanabe T, Yamada O, Yagihara T, et al. Post-exercise heart rate, blood pressure and oxygen uptake dynamics in pediatric patients with Fontan circulation Comparison with patients after right ventricular outflow tract reconstruction. Int J Cardiol. 2005;101:129-36.PubMedCrossRefGoogle Scholar
  28. Ohuchi H. Cardiopulmonary response to exercise in patients with the Fontan circulation. Cardiol Young. 2005;15 Suppl 3:39-44.PubMedCrossRefGoogle Scholar
  29. Praagh E van, Dore E. Short-term muscle power during growth and maturation. Sports Med. 2002;32:701-28.PubMedCrossRefGoogle Scholar
  30. Robinson S. Experimental studies of physical fitness in relation to age. Arbeitsphysiologie 1938;10:251-323.Google Scholar
  31. Rowland TW. Does peak Vo 2 reflect Vo 2max in children?: evidence from supramaximal testing. Med Sci Sports Exerc. 1993;25:689-93.PubMedCrossRefGoogle Scholar
  32. Schmidt-Nielsen K. Scaling: Why is Animal Size so Important? Cambridge: Cambridge University Press; 1984.CrossRefGoogle Scholar
  33. Timmons BW, Bar-Or O, Riddell MC. Oxidation rate of exogenous carbohydrate during exercise is higher in boys than in men. J Appl Physiol. 2003;94:278-84.PubMedCrossRefGoogle Scholar
  34. Tirosh E, Bar-Or O, Rosenbaum P. New muscle power test in neuromuscular disease. Feasibility and reliability. Am J Dis Child. 1990;144:1083-7.PubMedCrossRefGoogle Scholar
  35. Trowbridge CA, Gower BA, Nagy TR, Hunter GR, Treuth MS, Goran MI. Maximal aerobic capacity in African-American and Caucasian prepubertal children. Am J Physiol. 1997;273:E809-14.PubMedGoogle Scholar
  36. Zanconato S, Buchthal S, Barstow TJ, Cooper DM. 31P-magnetic resonance spectroscopy of leg muscle metabolism during exercise in children and adults. J Appl Physiol. 1993;74:2214.PubMedGoogle Scholar
  37. Zanconato S, Cooper DM, Armon Y. Oxygen cost and oxygen uptake dynamics and recovery with 1 minute of exercise in children and adults. J Appl Physiol. 1991;71:993-8.PubMedGoogle Scholar

Copyright information

© Bohn Stafleu van Loghum, onderdeel van Springer Uitgeverij 2008

Authors and Affiliations

  • T. Takken
    • 1
  • H.J. Hulzebos
    • 1
  1. 1.Wilhelmina KinderziekenhuisUMC UtrechtUtrecht

Personalised recommendations