Spierziekten is een verzamelnaam voor een groot aantal verschillende aandoeningen. In het verleden was het beleid inzake testen en trainen van patiënten met een spierziekte zeer behoudend, omdat er altijd een risico bestaat dat de gezondheidstoestand van de patiënten door de training verslechtert.


  1. Alexanderson H, Stenstrom CH, Jenner G, Lundberg I. The safety of a resistive home exercise program in patients with recent onset active polymyositis or dermatomyositis. Scand J Rheumatol. 2000;29:295-301.PubMedCrossRefGoogle Scholar
  2. Alexanderson H, Stenstrom CH, Lundberg I. Safety of a home exercise programme in patients with polymyositis and dermatomyositis: a pilot study. Rheumatology (Oxford). 1999;38:608-11.CrossRefGoogle Scholar
  3. Ansved T. Muscular dystrophies: influence of physical conditioning on the disease evolution. Curr Opin Clin Nutr Metab Care. 2003;6:435-9.PubMedGoogle Scholar
  4. Arnardottir S, Alexanderson H, Lundberg IE, Borg K. Sporadic inclusion body myositis: pilot study on the effects of a home exercise program on muscle function, histopathology and inflammatory reaction. J Rehabil Med. 2002;35:31-5.CrossRefGoogle Scholar
  5. Biring MS, Fournier M, Ross DJ, Lewis MI. Cellular adaptations of skeletal muscles to cyclosporine. J Appl Physiol. 1998;84:1967-75.PubMedGoogle Scholar
  6. Braakhekke JP, Bruin MI de, Stegeman DF, Wevers RA, Binkhorst RA, Joosten EM. The second wind phenomenon in McArdle’s disease. Brain. 1986;109 (Pt 6):1087-101.PubMedCrossRefGoogle Scholar
  7. Carter SL, Rennie CD, Hamilton SJ, Tarnopolsky MA. Changes in skeletal muscle in males and females following endurance training. Can J Physiol Pharmacol. 2001;79:386-92.PubMedCrossRefGoogle Scholar
  8. Cejudo P, Bautista J, Montemayor T, Villagomez R, Jimenez L, Ortega F, et al. Exercise training in mitochondrial myopathy: a randomized controlled trial. Muscle Nerve. 2005;32:342-50.PubMedCrossRefGoogle Scholar
  9. Coyle EF. Substrate utilization during exercise in active people. Am J Clin Nutr. 1995;61:S968-79.Google Scholar
  10. Duncan GE, Perkins LA, Theriaque DW, Neiberger RE, Stacpoole PW. Dichloroacetate therapy attenuates the blood lactate response to submaximal exercise in patients with defects in mitochondrial energy metabolism. J Clin Endocrinol Metab. 2004;89:1733-8.PubMedCrossRefGoogle Scholar
  11. Esbjornsson-Liljedahl M, Dasmalchi M, Alexanderson H, Stahlberg M, Lundberg IE. Changed muscle morphology in myositis patients following a home exercise program. In: Klarlund Petersen B, Febbraio M, Fleshner M, editors. 6th International Society of Exercise Immunology Symposium;. 2003; Copenhagen, Danmark; 2003. p. 47.Google Scholar
  12. Haller RG, Bertocci LA. Exercise evaluation of metabolic myopathies. In: Engel AG, Franzini-Armstrong C, editors. Myology. 2nd ed. New York: McGraw-Hill; 1994. pp. 807-21.Google Scholar
  13. Haller RG, Vissing J. No spontaneous second wind in muscle phosphofructokinase deficiency. Neurology. 2004;62:82-6.PubMedCrossRefGoogle Scholar
  14. Haller RG, Wyrick P, Cavender D, Wall A, Vissing J. Aerobic conditioning: an effective therapy in McArdle’s disease. Neurology. 1998;50:p. A369.CrossRefGoogle Scholar
  15. Hebert CA, Byrnes TJ, Baethge BA, Wolf RE, Kinasewitz GT. Exercise limitation in patients with polymyositis. Chest. 1990;98:352-7.PubMedCrossRefGoogle Scholar
  16. Hicks JE, Drinkard B, Summers RM, Rider LG. Decreased aerobic capacity in children with juvenile dermatomyositis. Arthritis Rheum. 2002;47:118-23.PubMedCrossRefGoogle Scholar
  17. Hickson RC, Marone JR. Exercise and inhibition of glucocorticoid-induced muscle atrophy. Exerc Sport Sci Rev. 1993;21:135-67.PubMedCrossRefGoogle Scholar
  18. Horber FF, Scheidegger JR, Grunig BE, Frey FJ. Evidence that prednisone-induced myopathy is reversed by physical training. J Clin Endocrinol Metab. 1985;61:83-8.PubMedCrossRefGoogle Scholar
  19. Huber AM, Hicks JE, Lachenbruch PA, Perez MD, Zemel LS, Rennebohm RM, et al. Validation of the Childhood Health Assessment Questionnaire in the juvenile idiopathic myopathies. Juvenile Dermatomyositis Disease Activity Collaborative Study Group. J Rheumatol. 2001;28:1106-11.PubMedGoogle Scholar
  20. Kooi EL van der, Vogels OJ, van Asseldonk RJ, Lindeman E, Hendriks JC, Wohlgemuth M, et al. Strength training and albuterol in facioscapulohumeral muscular dystrophy. Neurology. 2004;63:702-8.PubMedCrossRefGoogle Scholar
  21. Lovell DJ, Lindsley CB, Rennebohm RM, Ballinger SH, Bowyer SL, Giannini EH, et al. Development of validated disease activity and damage indices for the juvenile idiopathic inflammatory myopathies. ii. The Childhood Myositis Assessment Scale (cmas): a quantitative tool for the evaluation of muscle function. The Juvenile Dermatomyositis Disease Activity Collaborative Study Group. Arthritis Rheum. 1999;42:2213-9.PubMedCrossRefGoogle Scholar
  22. Maillard S. Quantitative Assessment of the Effects of Exercise on Muscles in Children with Dermatomyositis [msc]. London: City University; 2002.Google Scholar
  23. McDonald CM, Widman LM, Walsh DD, Walsh SA, Abresch RT. Use of step activity monitoring for continuous physical activity assessment in boys with Duchenne muscular dystrophy. Arch Phys Med Rehabil. 2005;86:802-8.PubMedCrossRefGoogle Scholar
  24. Ollivier K, Hogrel J-Y, Gomez-Merino D, Romero NR, Laforêt P, Eymard B, et al. Exercise tolerance and daily life in McArdle’s disease. Muscle & Nerve. 2005;31:637-41.CrossRefGoogle Scholar
  25. Olsen DB, Orngreen MC, Vissing J. Aerobic training improves exercise performance in facioscapulohumeral muscular dystrophy. Neurology. 2005;64:1064-6.PubMedCrossRefGoogle Scholar
  26. Orngreen M, Norgaard MG, Sacchetti M, Engelen BG van, Vissing J. Fuel utilization in patients with very long-chain acyl-coa dehydrogenase deficiency. Ann Neurol. 2004;56:279-83.PubMedCrossRefGoogle Scholar
  27. Orngreen MC, Duno M, Ejstrup R, Christensen E, Schwartz M, Sacchetti M, et al. Fuel utilization in subjects with carnitine palmitoyltransferase 2 gene mutations. Ann Neurol. 2005;57:60-6.PubMedCrossRefGoogle Scholar
  28. Orngreen MC, Ejstrup R, Vissing J. Effect of diet on exercise tolerance in carnitine palmitoyltransferase ii deficiency. Neurology. 2003;61:559-61.PubMedCrossRefGoogle Scholar
  29. Pachman LM. Juvenile dermatomyositis. Pathophysiology and disease expression. Pediatr Clin North Am. 1995;42:1071-98.PubMedGoogle Scholar
  30. Park JH, Niermann KJ, Ryder NM, Nelson AE, Das A, Lawton AR, et al. Muscle abnormalities in juvenile dermatomyositis patients: P-31 magnetic resonance spectroscopy studies. Arthritis Rheum. 2000;43:2359-67.PubMedCrossRefGoogle Scholar
  31. Phillips BA, Mastaglia FL. Exercise therapy in patients with myopathy. Curr Opin Neurol. 2000;13:547-52.PubMedCrossRefGoogle Scholar
  32. Resnick JS, Mammel M, Mundale MO, Kottke FJ. Muscular strength as an index of response to therapy in childhood dermatomyositis. Arch Phys Med Rehabil. 1981;62:12-9.PubMedGoogle Scholar
  33. Shephard RJ, Allen C, Benade AJ, Davies CT, Di Prampero PE, Hedman R, et al. The maximum oxygen intake. An international reference standard of cardiorespiratory fitness. Bull World Health Organ. 1968;38:757-64.PubMedCentralPubMedGoogle Scholar
  34. Siciliano G, Manca ML, Renna M, Prontera C, Mercuri A, Murri L. Effects of aerobic training on lactate and catecholaminergic exercise responses in mitochondrial myopathies. Neuromuscul Disord. 2000;10:40-5.PubMedCrossRefGoogle Scholar
  35. Silva AC, Russo AK, Picarro IC, Schmidt B, Gabbai A, Oliveira AS, et al. Cardiorespiratory responses to exercise in patients with spinal muscular atrophy and limb-girdle dystrophy. Braz J Med Biol Res. 1987;20:565-8.PubMedGoogle Scholar
  36. Sockolov R, Irwin B, Dressendorfer RH, Bernauer EM. Exercise performance in 6-to-11-year-old boys with Duchenne muscular dystrophy. Arch Phys Med Rehabil. 1977;58:195-201.PubMedGoogle Scholar
  37. Taivassalo T, De Stefano N, Chen J, Karpati G, Arnold DL, Argov Z. Short-term aerobic training response in chronic myopathies. Muscle Nerve. 1999a;22:1239-43.PubMedCrossRefGoogle Scholar
  38. Taivassalo T, Fu K, Johns T, Arnold D, Karpati G, Shoubridge EA. Gene shifting: a novel therapy for mitochondrial myopathy. Hum Mol Genet. 1999b;8:1047-52.PubMedCrossRefGoogle Scholar
  39. Taivassalo T, Haller RG. Implications of exercise training in mtdna defects – use it or lose it? Biochim Biophys Acta. 2004;1659:221-31.PubMedCrossRefGoogle Scholar
  40. Taivassalo T, Jensen TD, Kennaway N, DiMauro S, Vissing J, Haller RG. The spectrum of exercise tolerance in mitochondrial myopathies: a study of 40 patients. Brain. 2003;126:413-23.PubMedCrossRefGoogle Scholar
  41. Taivassalo T, Shoubridge EA, Chen J, Kennaway NG, DiMauro S, Arnold DL, et al. Aerobic conditioning in patients with mitochondrial myopathies: physiological, biochemical, and genetic effects. Ann Neurol. 2001;50:133-41.PubMedCrossRefGoogle Scholar
  42. Takken T, Custers J, Visser G, Dorland L, Helders P, Koning T de. Prolonged exercise testing in two children with a mild Multiple Acyl-CoA-Dehydrogenase deficiency. Nutr Metab (Lond). 2005a;2:12.CrossRefGoogle Scholar
  43. Takken T, Net J van der, Engelbert RH, Pater S, Helders PJM. Responsiveness of exercise parameters in children with inflammatory myositis. Arthritis and Rheumatism. In press 2007.Google Scholar
  44. Takken T, Net J van der, Helders PJ. Anaerobic exercise capacity in patients with juvenile-onset idiopathic inflammatory myopathies. Arthritis Rheum. 2005b;53:173-7.PubMedCrossRefGoogle Scholar
  45. Takken T, Spermon N, Helders PJ, Prakken AB, Net J van der. Aerobic exercise capacity in patients with juvenile dermatomyositis. J Rheumatol. 2003;30:1075-80.PubMedGoogle Scholar
  46. Tarnopolsky M. Exercise testing as a diagnostic entity in mitochondrial myopathies. Mitochondrion. 2004;4:529-42.PubMedCrossRefGoogle Scholar
  47. Tirosh E, Bar-Or O, Rosenbaum P. New muscle power test in neuromuscular disease. Feasibility and reliability. Am J Dis Child. 1990;144:1083-7.PubMedCrossRefGoogle Scholar
  48. us Department of Health and Human Services. Physical Activity and Health: A Report of the Surgeon General. Atlanta, GA: U.S.: Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion; 1996.Google Scholar
  49. Vignos PJ, Jr., Watkins MP. The effect of exercise in muscular dystrophy. jama. 1966;197:843-8.PubMedCrossRefGoogle Scholar
  50. Vissing J, Gansted U, Quistorff B. Exercise intolerance in mitochondrial myopathy is not related to lactic acidosis. Ann Neurol. 2001;49:672-6.PubMedCrossRefGoogle Scholar
  51. Vissing J, Haller RG. A diagnostic cycle test for McArdle’s disease. Ann Neurol. 2003a;54:539-42.PubMedCrossRefGoogle Scholar
  52. Vissing J, Haller RG. The effect of oral sucrose on exercise tolerance in patients with McArdle’s disease. N Engl J Med. 2003b;349:2503-9.PubMedCrossRefGoogle Scholar
  53. Wiesinger GF, Quittan M, Aringer M, Seeber A, Volc-Platzer B, Smolen J, et al. Improvement of physical fitness and muscle strength in polymyositis/dermatomyositis patients by a training programme. Br J Rheumatol. 1998a;37:196-200.PubMedCrossRefGoogle Scholar
  54. Wiesinger GF, Quittan M, Graninger M, Seeber A, Ebenbichler G, Sturm B, et al. Benefit of 6 months long-term physical training in polymyositis/dermatomyositis patients. Br J Rheumatol. 1998b;37:1338-42.PubMedCrossRefGoogle Scholar
  55. Wiesinger GF, Quittan M, Nuhr M, Volc-Platzer B, Ebenbichler G, Zehetgruber M, et al. Aerobic capacity in adult dermatomyositis/polymyositis patients and healthy controls. Arch Phys Med Rehabil. 2000;81:1-5.PubMedCrossRefGoogle Scholar

Copyright information

© Bohn Stafleu van Loghum, onderdeel van Springer Uitgeverij 2008

Authors and Affiliations

  • T. Takken
    • 1
  1. 1.Wilhelmina KinderziekenhuisUMC UtrechtUtrecht

Personalised recommendations