The Seventh European Conference on Combinatorics, Graph Theory and Applications pp 313-318 | Cite as

# Adjacent vertex-distinguishing edge coloring of graphs

## Abstract

An adjacent vertex-distinguishing edge coloring (AVD-coloring) of a graph is a proper edge coloring such that no two neighbors are adjacent to the same set of colors. Zhang *et al.* [17] conjectured that every connected graph on at least 6 vertices is AVD (Δ + 2)-colorable, where A is the maximum degree. In this paper, we prove that (Δ + 1) colors are enough when A is sufficiently larger than the maximum average degree, denoted mad. We also provide more precise lower bounds for two graph classes: planar graphs, and graphs with mad < 3. In the first case, Δ ≥ 12 suffices, which generalizes the result of Edwards *et al.* [7] on planar bipartite graphs. No other results are known in the case of planar graphs. In the second case, Δ ≥ 4 is enough, which is optimal and completes the results of Wang and Wang [14] and of Hocquard and Montassier [9].

## Keywords

Planar Graph Discrete Math Graph Class Edge Coloring Chromatic Index## Preview

Unable to display preview. Download preview PDF.

## References

- [1]S. Akbari, H. Bidkhori and N. Nosrati,
*r-strong edge colorings of graphs*, Discrete Math.**306**(2006), 3005–3010.CrossRefzbMATHMathSciNetGoogle Scholar - [2]P. N. Balister, E. Győri, J. Lehel and R. H. Schelp,
*Adjacent vertex distinguishing edge-colorings*, SIAM J. Discrete Math.**21**(2007), 237–250.CrossRefzbMATHMathSciNetGoogle Scholar - [3]P. N. Balister, O. M. Riordan and R. H. Schelp,
*Vertex-distinguishing edge-colorings of graphs*, J. Graph Theory,**42**(2003), 95–109.CrossRefzbMATHMathSciNetGoogle Scholar - [4]O. V. Borodin, A. V. Kostochka and D. R. Woodall,
*List Edge and List Total Colourings of Multigraphs*, J. Comb. Theory, Series B**71**(2) (1997), 184–204.CrossRefzbMATHMathSciNetGoogle Scholar - [5]A. C. Burris and R. H. Schelp,
*Vertex-distinguishing proper edge-colorings*, J. Graph Theory**26**(1997), 73–83.CrossRefzbMATHMathSciNetGoogle Scholar - [6]J. Cerný, M. Horňák and R. Soták,
*Observability of a graph*, Mathematica Slovaca**46**(1) (1996), 21–31.zbMATHMathSciNetGoogle Scholar - [7]K. Edwards, M. Horňák and M. Woźniak,
*On the neighbour-distinguishing index of a graph*, Graphs and Comb.**22**(3) (2006), 341–350.CrossRefzbMATHGoogle Scholar - [8]O. Favaron, H. Li and R. H. Schelp,
*Strong edge coloring of graphs*, Discrete Math.**159**(1996), 103–109.CrossRefzbMATHMathSciNetGoogle Scholar - [9]H. Hocquard and M. Montassier,
*Adjacent vertex-distinguishing edge coloring of graphs with maximum degree*Δ, DOI: 10.1007/S10878-011-9444-9, 2012.Google Scholar - [10]A. V. Kostochka and D. R. Woodall,
*Choosability conjectures and multicircuits*, Discrete Math.*240*(2001), 123–143.CrossRefzbMATHMathSciNetGoogle Scholar - [11]D. P. Sanders and Y. Zhao,
*Planar Graphs of Maximum Degree Seven are Class I*, J. Comb. Theory, Series B**83**(2) (2001), 201–212.CrossRefzbMATHMathSciNetGoogle Scholar - [12]V. G. Vizing,
*On an estimate of the chromatic class of a p-graph*, Metody Diskret. Analiz.**3**(1964), 23–30.Google Scholar - [13]V. G. Vizing,
*Colouring the vertices of a graph with prescribed colours*(in russian), Diskret. Analiz.**29**(1976), 3–10.zbMATHMathSciNetGoogle Scholar - [14]W. Wang and Y. Wang,
*Adjacent vertex distinguishing edge-colorings of graphs with smaller maximum average degree*, J. Comb. Optim.,**19**(2010), 471–485.CrossRefzbMATHMathSciNetGoogle Scholar - [15]D. R. Woodall,
*The average degree of an edge-chromatic critical graph II*, J. Graph Theory**56**(3) (2007), 194–218.CrossRefzbMATHMathSciNetGoogle Scholar - [16]D. R. Woodall,
*The average degree of a multigraph critical with respect to edge or total choosability*, Discrete Math.**310**(2010), 1167–1171.CrossRefzbMATHMathSciNetGoogle Scholar - [17]Z. Zhang, L. Liu and J. Wang,
*Adjacent strong edge coloring of graphs*, Appl. Math. Lett.**15**(2002), 623–626.Google Scholar