Evaluation Techniques of the PICC Tip Placement

  • Antonio La GrecaEmail author


Correct tip position of a peripherally inserted central venous catheter (PICC) is of paramount importance in order to ensure good catheter performances and to prevent severe complications such as venous thrombosis or vessel/heart perforation. PICCs are prone to high rates of primary malposition if placed without any intraoperative method of tip control, due to their pronounced flexibility and the long route they must go through to reach the atriocaval junction.

Primary tip malposition not only exposes the patient to a wide range of infusion-related complications but also increases the average cost of the procedure, especially in high-volume centers, as it requires at least an over-guidewire replacement, in most cases a completely new venipuncture. An updated review of available techniques for controlling the position of the tip of the central catheter together with a proposal of a comprehensive algorithm to help choosing the best tip verification procedure is provided here.


Insertion Procedure Peripherally Insert Central Venous Catheter Tracheal Carina Pleural Complication Bard Access System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Cl N (2007) Reduction of malposition in peripherally inserted central catheters with tip location system. JAVA 12:29–31CrossRefGoogle Scholar
  2. 2.
    Vesely TM (2003) Central venous catheter tip position: a continuing controversy. J Vasc Interv Radiol 14:527–534PubMedCrossRefGoogle Scholar
  3. 3.
    NAVAN – National Association of Vascular Access Networks (1998) NAVAN position statement on terminal tip placement. J Vasc Access Dev 3:8–10Google Scholar
  4. 4.
    Bishop L, Dougherty L, Bodenham A, Mansi J, Crowes P, Kibbler C, Shannon M, Treleave J, BCSH Committee (2007) Guidelines on the insertion and management of central venous access devices in adults. Int J Lab Hem 29:261–278CrossRefGoogle Scholar
  5. 5.
    Pittiruti M, Hamilton H, Biffi R, MacFie J, Pertkiewiz M (2009) ESPEN guidelines on parenteral nutrition: central venous catheters (access, care, diagnosis and therapy of complications). Clin Nutr 28:365–377PubMedCrossRefGoogle Scholar
  6. 6.
    Infusion Nurses Society (2011) Infusion nursing standards of practice. J Infus Nurs 34(1 Suppl):S1–S110Google Scholar
  7. 7.
    Petersen J, Delaney JH, Brakstad MT, Rowbotham RK, Bagley CM Jr (1999) Silicone venous access devices positioned with their tips high in the superior vena cava are more likely to malfunction. Am J Surg 178:38–41PubMedCrossRefGoogle Scholar
  8. 8.
    Caers J, Fontaine C, Vinh-Hung V et al (2005) Catheter tip position as a risk factor for thrombosis associated with the use of subcutaneous infusion ports. Support Care Cancer 13:325–331PubMedCrossRefGoogle Scholar
  9. 9.
    McGee DC, Gould MK (2003) Preventing complications of central venous catheterization. N Engl J Med 348:1123–1133PubMedCrossRefGoogle Scholar
  10. 10.
    Pittiruti M, La Greca A, Scoppettuolo G (2011) The electrocardiographic method for positioning the tip of central venous catheters. J Vasc Access 12(4):280–291PubMedCrossRefGoogle Scholar
  11. 11.
    Puel V, Caudry M, le Métayer P et al (1993) Superior vena cava thrombosis related to catheter malposition in cancer chemotherapy given through implanted ports. Cancer 72:2248–2252PubMedCrossRefGoogle Scholar
  12. 12.
    Taylor RW, Palagiri AV (2007) Central venous catheterization. Crit Care Med 35:1390–1396PubMedCrossRefGoogle Scholar
  13. 13.
    Peres PW (1990) Positioning central venous catheters - a prospective survey. Anaesth Intensive Care 18:536–539PubMedGoogle Scholar
  14. 14.
    Kim H, Jeong CH, Byon HJ, Shin HK, Yun TJ, Lee JH, Park YH, Kim JT (2013) Predicting the optimal depth of left-sided central venous catheters in children. Anaesthesia 68(10):1033–1037PubMedCrossRefGoogle Scholar
  15. 15.
    Yoon SZ, Shin TJ, Kim HS, Lee J, Kim CS, Kim SD, Park CD (2006) Depth of a central venous catheter tip: length of insertion guideline for pediatric patients. Acta Anaesthesiol Scand 50(3):355–357PubMedCrossRefGoogle Scholar
  16. 16.
    Kim JH, Kim CS, Bahk JH, Cha KJ, Park YS, Jeon YT, Han SH (2005) The optimal depth of central venous catheter for infants less than 5 kg. Anesth Analg 101(5):1301–1303PubMedCrossRefGoogle Scholar
  17. 17.
    Andropoulos DB, Bent ST, Skjonsby B, Stayer SA (2001) The optimal length of insertion of central venous catheters for pediatric patients. Anesth Analg 93(4):883–886PubMedCrossRefGoogle Scholar
  18. 18.
    Lum P (2004) A New formula-based measurement guide for optimal positioning of central venous catheters. JAVA 9(2):80–85CrossRefGoogle Scholar
  19. 19.
    Schweickert WD, Herlitz J, Pohlman AS, Gehlbach BK, Hall JB, Kress JP (2009) A randomized, controlled trial evaluating postinsertion neck ultrasound in peripherally inserted central catheter procedures. Crit Care Med 37(4):1217–1221PubMedCrossRefGoogle Scholar
  20. 20.
    Royer T, Earhart A (2007) Taking the leap from PICC placement to tip placement. JAVA 12:148–155CrossRefGoogle Scholar
  21. 21.
    Pittiruti M, Bertollo D, Briglia E, Buononato M, Capozzoli G, De Simone L, La Greca A, Pelagatti C, Sette P (2012) The intracavitary EKG method for positioning the tip of central venous catheters: results of an Italian multicenter study. J Vasc Access 13(3):357–365PubMedCrossRefGoogle Scholar
  22. 22.
    Aslamy Z, Cl D, Heffner JE (1998) MRI of central venous anatomy: implications for central venous catheter insertion. Chest 114:820–826PubMedCrossRefGoogle Scholar
  23. 23.
    Claasz AA, Chorley DP (2007) A study of the relationship of the superior vena cava to the bony landmarks of the sternum in the supine adult: implications for magnetic guidance systems. JAVA 12(3):132–139CrossRefGoogle Scholar
  24. 24.
    Shekelle PG, Pronovost PJ, Wachter RM et al (2013) The top patient safety strategies that can be encouraged for adoption now. Ann Intern Med 158(5 Pt 2):365–368Google Scholar
  25. 25.
    Maury E, Guglielminotti J, Alzieu M, Guidet B, Offenstadt G (2001) Ultrasonic examination: an alternative to chest radiography after central venous catheter insertion? Am J Respir Crit Care Med 164(3):403–5Google Scholar
  26. 26.
    Bedel J, Vallée F, Mari A, Riu B, Planquette B, Geeraerts T, Génestal M, Minville V, Fourcade O (2013) Guidewire localization by transthoracic echocardiography during central venous catheter insertion: a periprocedural method to evaluate catheter placement. Intensive Care Med 39(11):1932–1937PubMedCrossRefGoogle Scholar
  27. 27.
    Vezzani A, Brusasco C, Palermo S, Launo C, Mergoni M, Corradi F (2010) Ultrasound localization of central vein catheter and detection of postprocedural pneumothorax: an alternative to chest radiography. Crit Care Med 38(2):533–538PubMedCrossRefGoogle Scholar
  28. 28.
    Lamperti M, Bodenham AR, Pittiruti M, Blaivas M, Augoustides JG, Elbarbary M, Pirotte T, Karakitsos D, Ledonne J, Doniger S, Scoppettuolo G, Feller-Kopman D, Schummer W, Biffi R, Desruennes E, Melniker LA, Verghese ST (2012) International evidence-based recommendations on ultrasound-guided vascular access. Intensive Care Med 38(7):1105–1117PubMedCrossRefGoogle Scholar
  29. 29.
    La Greca A (2013) Current recommendations for placement of long term VADs: role of ultrasound, role of intracavitary EKG and the SILTA-2 bundle in 2013. Proceedings 8th GAVeCeLT congress, Turin, 6–7th Dec 2013 (in press)Google Scholar
  30. 30.
    Biasucci DG (2013) Ultrasound for tip verification and for early detection of pleural complications. Proceedings 8th GAVeCeLT congress, Turin, 6–7th Dec 2013 (in press)Google Scholar
  31. 31.
    French JL, Raine-Fenning NJ, Hardman JG, Bedforth NM (2008) Pitfalls of ultrasound guided vascular access: the use of three/four-dimensional ultrasound. Anaesthesia 63(8):806–813PubMedCrossRefGoogle Scholar
  32. 32.
    Dowling M, Jlala HA, Hardman JG, Bedforth NM (2011) Real-time three-dimensional ultrasound-guided central venous catheter placement. Anesth Analg 112(2):378–381PubMedCrossRefGoogle Scholar
  33. 33.
    Chu KS, Hsu JH, Wang SS et al (2004) Accurate central venous port-A catheter placement: intravenous electrocardiography and surface landmark techniques compared by using transesophageal echocardiography. Anesth Analg 98:910–914PubMedCrossRefGoogle Scholar
  34. 34.
    Hsu JH, Wang CK, Chu KS et al (2006) Comparison of radiographic landmarks and the echocardiographic SVC/RA junction in the positioning of long term central venous catheters. Acta Anaesthesiol Scand 50:731–735PubMedCrossRefGoogle Scholar
  35. 35.
    Jeon Y, Ryu HG, Yoon SZ, Kim JH, Bahk JH (2006) Transesophageal echocardiographic evaluation of EKG-guided central venous catheter placement. Can J Anaesth 53(10):978–983PubMedCrossRefGoogle Scholar
  36. 36.
    Yunseok J, Ho-Geol R, Seun-Zhoo Y, Jim-Hee K, Jae-Hyon B (2006) Transesophageal echocardiographic evaluation of EKG- guided central venous catheter placement. Can J Anaesth 53:978–983CrossRefGoogle Scholar
  37. 37.
    Hellerstein HK, Pritchard WH, Lewis RL (1949) Recording of intracavitary potentials through a single-lumen saline filled cardiac catheter. Proc Soc Exp Biol Med 71:58–60PubMedCrossRefGoogle Scholar
  38. 38.
    Neubauer AP (1995) Percutaneous central IV access in the neonate: experience with 535 silastic catheters. Acta Pediatr 84:758–760CrossRefGoogle Scholar
  39. 39.
    Lozano LS, Capdevila MB (1997) Cateters de silastic: localizacion del extremo distal mediante monitorizacion electrocardiografica. Rev Enferm 20(230):50–52Google Scholar
  40. 40.
    Biban P, Cavalli C, Santuz P, Soffiati M, Rugolotto S, Zangardi T (2000) Positioning of umbilical vein catheter with EKG-guided technique: randomized study. Acta Biomed Ateneo Parmense 71(suppl):647–650PubMedGoogle Scholar
  41. 41.
    Tierney SN, Katke J, Langer JC (2000) Cost comparison of electro- cardiography versus fluoroscopy for central venous line positioning in children. J Am Coll Surg 191:209–211PubMedCrossRefGoogle Scholar
  42. 42.
    Engelhardt W, Sold M, Helzel MV (1989) EKG-controlled placement of central venous catheters in patients with atrial fibrillation. Anaesthesist 38:476–479PubMedGoogle Scholar
  43. 43.
    Pittiruti M, La Greca A, Scoppettuolo G, et al. (2011) EKG-controlled placement of central venous catheters in patients with atrial fibrillation. Proceedings of the INS 2011 annual convention & industrial exhibition, Louisville, 21–26 May 2011Google Scholar
  44. 44.
    Ender J, Erdoes G, Krohmer E, Olthoff D, Mukherjee C (2009) Transesophageal echocardiography for verification of the position of the electrocardiographically-placed central. J Cardiothorac Vasc Anesth 23(4):457–461PubMedCrossRefGoogle Scholar
  45. 45.
    Gebhard RE (2007) Can electrocardiogram-controlled central line placement decrease the need for routine chest radiographs after central venous cannulation? Anesth Analg 104:1614CrossRefGoogle Scholar
  46. 46.
    Weissauer W (1998) Der Cava-Katheter aus medico-legaler Sicht. Anaesthesiol Intensivmed Notfallmed Schmerzther 33:117CrossRefGoogle Scholar
  47. 47.
    Volpicelli G, Elbarbary M, Blaivas M et al (2012) International evidence-based recommendations for point-of-care lung ultrasound. Intensive Care Med 38(4):577–591PubMedCrossRefGoogle Scholar
  48. 48.
    Antonaglia V, Ristagno G, Berlot G (2008) Procedural and clinical data plus electrocardiographic guidance greatly reduce the need for routine chest radiograph following central line placement. J Trauma 64(4):1146PubMedCrossRefGoogle Scholar
  49. 49.
    Gray H (1918) Anatomy of the human body. Lea & Febiger, PhiladelphiaGoogle Scholar

Copyright information

© Springer-Verlag Italia 2014

Authors and Affiliations

  1. 1.Department of Surgical Sciences“A. Gemelli” Hospital – Catholic UniversityRomeItaly

Personalised recommendations